Suppr超能文献

连接大肠杆菌分解代谢物阻遏与Csr全局调控系统的电路

Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.

作者信息

Pannuri Archana, Vakulskas Christopher A, Zere Tesfalem, McGibbon Louise C, Edwards Adrianne N, Georgellis Dimitris, Babitzke Paul, Romeo Tony

机构信息

Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, Florida, USA.

Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

J Bacteriol. 2016 Oct 7;198(21):3000-3015. doi: 10.1128/JB.00454-16. Print 2016 Nov 1.

Abstract

UNLABELLED

Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status.

IMPORTANCE

Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower-affinity mRNA targets, thus eliciting major shifts in the bacterial lifestyle. CsrB/C transcription and turnover are activated by carbon metabolism products (e.g., formate and acetate) and by a preferred carbon source (glucose), respectively. We show that cAMP-CRP, a mediator of classical catabolite repression, inhibits csrC transcription by binding to the upstream region of this gene and also inhibits csrB transcription, apparently indirectly. We propose that glucose availability activates pathways for both synthesis and turnover of CsrB/C, thus shaping the dynamics of global signaling in response to the nutritional environment by poising CsrB/C sRNA levels for rapid response.

摘要

未标记

环磷酸腺苷(cAMP)、cAMP受体蛋白(cAMP-CRP)和CsrA分别是分解代谢物阻遏和碳储存全局调节系统的主要调节因子。cAMP-CRP根据碳营养状态控制碳水化合物代谢及其他过程相关基因的转录,而CsrA与多种mRNA结合并调节翻译、RNA稳定性和/或转录延伸。CsrA还与调节性小RNA(sRNA)CsrB和CsrC结合,拮抗其活性。BarA-UvrY双组分信号转导系统(TCS)直接激活csrB和csrC(csrB/C)的转录,而CsrA则间接激活。我们发现cAMP-CRP抑制csrB/C的转录,但不会对磷酸化的UvrY(P-UvrY)或CsrA水平产生负调节。crp基因缺失导致生长稳定期CsrB/C水平升高,并增加了csrB-lacZ和csrC-lacZ转录融合体的表达,尽管crp基因缺失对CsrB/C周转的适度刺激部分掩盖了前者的影响。DNase I足迹分析和其他研究表明,cAMP-CRP特异性结合于csrC启动子上游的三个位点,其中两个位点与P-UvrY结合位点重叠。这两种蛋白在重叠位点竞争结合。体外转录-翻译实验证实cAMP-CRP直接抑制csrC-lacZ的表达。相比之下,cAMP-CRP对csrB转录的影响可能是间接介导的,因为它与csrB DNA非特异性结合。反之,CsrA以高亲和力和特异性结合crp mRNA,但对其表达仅表现出适度的、有条件的影响。我们的研究结果被纳入一个关于Csr信号通路对碳营养状态响应的新兴模型中。

重要性

大肠杆菌的Csr(Rsm)非编码小RNA(sRNA)CsrB和CsrC利用分子模拟将RNA结合蛋白CsrA(RsmA)从低亲和力mRNA靶标上隔离,从而引发细菌生活方式的重大转变。CsrB/C的转录和周转分别由碳代谢产物(如甲酸和乙酸)和首选碳源(葡萄糖)激活。我们发现,经典分解代谢物阻遏的介导因子cAMP-CRP通过结合该基因的上游区域抑制csrC转录,并且显然间接抑制csrB转录。我们提出,葡萄糖的可利用性激活了CsrB/C合成和周转的途径,从而通过平衡CsrB/C sRNA水平以实现快速响应,塑造了响应营养环境的全局信号动态。

相似文献

1
Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.
J Bacteriol. 2016 Oct 7;198(21):3000-3015. doi: 10.1128/JB.00454-16. Print 2016 Nov 1.
2
Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli.
J Bacteriol. 2002 Sep;184(18):5130-40. doi: 10.1128/JB.184.18.5130-5140.2002.
3
Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins.
Nucleic Acids Res. 2016 Sep 19;44(16):7896-910. doi: 10.1093/nar/gkw484. Epub 2016 May 27.
4
Regulation of CsrB/C sRNA decay by EIIA(Glc) of the phosphoenolpyruvate: carbohydrate phosphotransferase system.
Mol Microbiol. 2016 Feb;99(4):627-39. doi: 10.1111/mmi.13259. Epub 2015 Nov 17.
6
Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems.
PLoS One. 2015 Dec 16;10(12):e0145035. doi: 10.1371/journal.pone.0145035. eCollection 2015.
7
Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system.
J Bacteriol. 2015 Mar;197(5):983-91. doi: 10.1128/JB.02325-14. Epub 2014 Dec 22.
8
A novel sRNA component of the carbon storage regulatory system of Escherichia coli.
Mol Microbiol. 2003 May;48(3):657-70. doi: 10.1046/j.1365-2958.2003.03459.x.
9
Circuitry linking the Csr and stringent response global regulatory systems.
Mol Microbiol. 2011 Jun;80(6):1561-80. doi: 10.1111/j.1365-2958.2011.07663.x. Epub 2011 May 5.

引用本文的文献

1
Intracellular formate modulates a motility-invasion switch in Salmonella Typhimurium.
PLoS Pathog. 2025 Sep 4;21(9):e1013453. doi: 10.1371/journal.ppat.1013453. eCollection 2025 Sep.
3
Post-Transcriptional Regulation of the MiaA Prenyl Transferase by CsrA and the Small RNA CsrB in .
Int J Mol Sci. 2025 Jun 24;26(13):6068. doi: 10.3390/ijms26136068.
4
Multiscale regulation of nutrient stress responses in from chromatin structure to small regulatory RNAs.
bioRxiv. 2024 Jun 24:2024.06.20.599902. doi: 10.1101/2024.06.20.599902.
6
Multitier regulation of the extreme acid stress response by CsrA.
J Bacteriol. 2024 Apr 18;206(4):e0035423. doi: 10.1128/jb.00354-23. Epub 2024 Feb 6.
7
Added insult to injury? The response of meat-associated pathogens to proposed antimicrobial interventions.
Appl Microbiol Biotechnol. 2024 Dec;108(1):87. doi: 10.1007/s00253-023-12849-x. Epub 2024 Jan 8.
8
CsrA Shows Selective Regulation of sRNA-mRNA Networks.
bioRxiv. 2023 Mar 29:2023.03.29.534774. doi: 10.1101/2023.03.29.534774.
9
Battle for Metals: Regulatory RNAs at the Front Line.
Front Cell Infect Microbiol. 2022 Jul 5;12:952948. doi: 10.3389/fcimb.2022.952948. eCollection 2022.

本文引用的文献

1
Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins.
Nucleic Acids Res. 2016 Sep 19;44(16):7896-910. doi: 10.1093/nar/gkw484. Epub 2016 May 27.
3
Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo.
EMBO J. 2016 May 2;35(9):991-1011. doi: 10.15252/embj.201593360. Epub 2016 Apr 4.
5
Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems.
PLoS One. 2015 Dec 16;10(12):e0145035. doi: 10.1371/journal.pone.0145035. eCollection 2015.
6
Regulation of CsrB/C sRNA decay by EIIA(Glc) of the phosphoenolpyruvate: carbohydrate phosphotransferase system.
Mol Microbiol. 2016 Feb;99(4):627-39. doi: 10.1111/mmi.13259. Epub 2015 Nov 17.
8
Regulation of bacterial virulence by Csr (Rsm) systems.
Microbiol Mol Biol Rev. 2015 Jun;79(2):193-224. doi: 10.1128/MMBR.00052-14.
9
Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system.
J Bacteriol. 2015 Mar;197(5):983-91. doi: 10.1128/JB.02325-14. Epub 2014 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验