Suppr超能文献

用于MERLIN任务的1.64微米光谱区域的精确甲烷吸收测量。

Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.

作者信息

Delahaye T, Maxwell S E, Reed Z D, Lin H, Hodges J T, Sung K, Devi V M, Warneke T, Spietz P, Tran H

机构信息

Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA, CNRS UMR 7583), Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace, 94010 Créteil.

National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.

出版信息

J Geophys Res Atmos. 2016 Jun 27;121(12):7360-7370. doi: 10.1002/2016JD025024. Epub 2016 Jun 18.

Abstract

In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2 band of CH. Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa - 1013 hPa with methane molar fractions between 1 μmol mol and 12 μmol mol. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

摘要

在本文中,我们描述了一项针对CH的2带R(6)多重态的高精度实验室测量。法德甲烷遥感激光雷达(MERLIN)空间任务在反演大气甲烷时将需要该吸收光谱的精确物理模型。该分析使用Hartmann-Tran线型来对线型进行建模,并且还考虑了谱线混合效应。为此,使用一台频率稳定的光腔衰荡光谱仪记录了六个高分辨率、高信噪比的空气增宽甲烷吸收光谱。样品条件对应于室温,总样品压力范围为40 hPa至1013 hPa,甲烷摩尔分数在1 μmol/mol至12 μmol/mol之间。所有光谱模型参数在对六个测量光谱的多光谱非线性最小二乘拟合中同时进行调整。将拟合模型与测量光谱进行比较表明,在MERLIN任务的在线位置,计算室温下甲烷吸收系数的能力优于0.1%。这是首次在对所研究光谱区域的甲烷吸收进行建模时达到如此高的精度,满足了MERLIN任务的精度要求。当将当前结果与在不同压力条件下获得的测量结果以及使用其他实验室技术获得的测量结果进行比较时,我们也发现了极好的一致性。最后,我们还评估了这些新光谱参数对大气透射光谱计算的影响。

相似文献

1
Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.
J Geophys Res Atmos. 2016 Jun 27;121(12):7360-7370. doi: 10.1002/2016JD025024. Epub 2016 Jun 18.
3
Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070-6180 cm-1 region.
Spectrochim Acta A Mol Biomol Spectrosc. 2007 Apr;66(4-5):811-8. doi: 10.1016/j.saa.2006.10.046. Epub 2006 Nov 6.
4
Multispectrum analysis of the oxygen A-band.
J Quant Spectrosc Radiat Transf. 2017 Jan;186:118-138. doi: 10.1016/j.jqsrt.2016.03.037. Epub 2016 Apr 11.
9
Pressure and temperature dependencies of air-perturbed O B-band line shapes.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 15;303:123185. doi: 10.1016/j.saa.2023.123185. Epub 2023 Jul 25.
10
Comb-locked cavity ring-down spectroscopy with variable temperature.
Opt Express. 2019 Dec 23;27(26):37559-37567. doi: 10.1364/OE.376572.

引用本文的文献

2
Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity.
Phys Rev Lett. 2019 Jul 26;123(4):043001. doi: 10.1103/PhysRevLett.123.043001.
3
Large regional shortwave forcing by anthropogenic methane informed by Jovian observations.
Sci Adv. 2018 Sep 26;4(9):eaas9593. doi: 10.1126/sciadv.aas9593. eCollection 2018 Sep.
4
Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform.
J Appl Remote Sens. 2017 Jul;11(3). doi: 10.1117/1.JRS.11.034001. Epub 2017 Sep 1.
5
Coherent cavity-enhanced dual-comb spectroscopy.
Opt Express. 2016 May 16;24(10):10424-34. doi: 10.1364/OE.24.010424.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验