Delahaye T, Maxwell S E, Reed Z D, Lin H, Hodges J T, Sung K, Devi V M, Warneke T, Spietz P, Tran H
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA, CNRS UMR 7583), Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace, 94010 Créteil.
National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
J Geophys Res Atmos. 2016 Jun 27;121(12):7360-7370. doi: 10.1002/2016JD025024. Epub 2016 Jun 18.
In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2 band of CH. Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa - 1013 hPa with methane molar fractions between 1 μmol mol and 12 μmol mol. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.
在本文中,我们描述了一项针对CH的2带R(6)多重态的高精度实验室测量。法德甲烷遥感激光雷达(MERLIN)空间任务在反演大气甲烷时将需要该吸收光谱的精确物理模型。该分析使用Hartmann-Tran线型来对线型进行建模,并且还考虑了谱线混合效应。为此,使用一台频率稳定的光腔衰荡光谱仪记录了六个高分辨率、高信噪比的空气增宽甲烷吸收光谱。样品条件对应于室温,总样品压力范围为40 hPa至1013 hPa,甲烷摩尔分数在1 μmol/mol至12 μmol/mol之间。所有光谱模型参数在对六个测量光谱的多光谱非线性最小二乘拟合中同时进行调整。将拟合模型与测量光谱进行比较表明,在MERLIN任务的在线位置,计算室温下甲烷吸收系数的能力优于0.1%。这是首次在对所研究光谱区域的甲烷吸收进行建模时达到如此高的精度,满足了MERLIN任务的精度要求。当将当前结果与在不同压力条件下获得的测量结果以及使用其他实验室技术获得的测量结果进行比较时,我们也发现了极好的一致性。最后,我们还评估了这些新光谱参数对大气透射光谱计算的影响。