Suppr超能文献

手性识别的金属-氨基酸生物配位聚合物纳线的导电性。

Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires.

机构信息

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China.

Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University , Zhangzhou 363000, People's Republic of China.

出版信息

ACS Nano. 2016 Sep 27;10(9):8564-70. doi: 10.1021/acsnano.6b03833. Epub 2016 Aug 26.

Abstract

Biocoordination polymer (BCP) nanowires are successfully constructed through self-assembly of chiral cysteine amino acids and Cd cations in solution. The varied chirality of cysteine is explored to demonstrate the difference of BCP nanowires in both morphology and structure. More interestingly and surprisingly, the electrical property measurement reveals that, although all Cd(II)/cysteine BCP nanowires behave as semiconductors, the conductivity of the Cd(II)/dl-cysteine nanowires is 4 times higher than that of the Cd(II)/l-cysteine or Cd(II)/d-cysteine ones. The origin of such chirality-discriminated characteristics registered in BCP nanowires is further elucidated by theoretical calculation. These findings demonstrate that the morphology, structure, and property of BCP nanostructures could be tuned by the chirality of the bridging ligands, which will shed light on the comprehension of chirality transcription as well as construction of chirality-regulated functional materials.

摘要

通过在溶液中手性半胱氨酸氨基酸和 Cd 阳离子的自组装,成功构建了生物协调聚合物(BCP)纳米线。探索了半胱氨酸的不同手性,以证明 BCP 纳米线在形态和结构上的差异。更有趣和令人惊讶的是,电性能测量表明,尽管所有 Cd(II)/半胱氨酸 BCP 纳米线都表现为半导体,但 Cd(II)/dl-半胱氨酸纳米线的电导率是 Cd(II)/l-半胱氨酸或 Cd(II)/d-半胱氨酸纳米线的 4 倍。通过理论计算进一步阐明了这种在 BCP 纳米线中记录的手性区分特征的起源。这些发现表明,BCP 纳米结构的形态、结构和性能可以通过桥联配体的手性进行调节,这将有助于理解手性转录以及构建手性调节功能材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验