Morris Ryan J, Brandani Giovanni B, Desai Vibhuti, Smith Brian O, Schor Marieke, MacPhee Cait E
School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
School of Life Sciences, University of Glasgow, Glasgow, UK.
Biophys J. 2016 Aug 23;111(4):732-742. doi: 10.1016/j.bpj.2016.06.006.
Ranaspumin-2 (Rsn-2) is a surfactant protein found in the foam nests of the túngara frog. Previous experimental work has led to a proposed model of adsorption that involves an unusual clam-shell-like unhinging of the protein at an interface. Interestingly, there is no concomitant denaturation of the secondary structural elements of Rsn-2 with the large-scale transformation of its tertiary structure. In this work we use both experiment and simulation to better understand the driving forces underpinning this unusual process. We develop a modified Gō-model approach where we have included explicit representation of the side chains to realistically model the interaction between the secondary structure elements of the protein and the interface. Doing so allows for the study of the underlying energy landscape that governs the mechanism of Rsn-2 interfacial adsorption. Experimentally, we study targeted mutants of Rsn-2, using the Langmuir trough, pendant drop tensiometry, and circular dichroism, to demonstrate that the clam-shell model is correct. We find that Rsn-2 adsorption is in fact a two-step process: the hydrophobic N-terminal tail recruits the protein to the interface after which Rsn-2 undergoes an unfolding transition that maintains its secondary structure. Intriguingly, our simulations show that the conformation Rsn-2 adopts at an interface is an arrested state along the denaturation pathway. More generally, our computational model should prove a useful, and computationally efficient, tool in studying the dynamics and energetics of protein-interface interactions.
雨蛙素-2(Rsn-2)是一种在泡蟾的泡沫巢穴中发现的表面活性蛋白。先前的实验工作提出了一种吸附模型,该模型涉及蛋白质在界面处发生类似蛤壳状的异常展开。有趣的是,Rsn-2的二级结构元件并未随着其三级结构的大规模转变而发生变性。在这项工作中,我们同时使用实验和模拟来更好地理解支撑这一异常过程的驱动力。我们开发了一种改进的Gō模型方法,其中明确表示了侧链,以真实地模拟蛋白质二级结构元件与界面之间的相互作用。这样做有助于研究控制Rsn-2界面吸附机制的潜在能量景观。在实验方面,我们使用Langmuir槽、悬滴张力测定法和圆二色性研究了Rsn-2的靶向突变体,以证明蛤壳模型是正确的。我们发现Rsn-2的吸附实际上是一个两步过程:疏水的N末端尾巴将蛋白质招募到界面,之后Rsn-2经历保持其二级结构的展开转变。有趣的是,我们的模拟表明Rsn-2在界面处采用的构象是变性途径中的一种停滞状态。更一般地说,我们的计算模型应该是研究蛋白质-界面相互作用的动力学和能量学的一种有用且计算高效的工具。