Suppr超能文献

界面吸附的雨蛙素-2的构象是其展开途径上的一种停滞状态。

The Conformation of Interfacially Adsorbed Ranaspumin-2 Is an Arrested State on the Unfolding Pathway.

作者信息

Morris Ryan J, Brandani Giovanni B, Desai Vibhuti, Smith Brian O, Schor Marieke, MacPhee Cait E

机构信息

School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.

School of Life Sciences, University of Glasgow, Glasgow, UK.

出版信息

Biophys J. 2016 Aug 23;111(4):732-742. doi: 10.1016/j.bpj.2016.06.006.

Abstract

Ranaspumin-2 (Rsn-2) is a surfactant protein found in the foam nests of the túngara frog. Previous experimental work has led to a proposed model of adsorption that involves an unusual clam-shell-like unhinging of the protein at an interface. Interestingly, there is no concomitant denaturation of the secondary structural elements of Rsn-2 with the large-scale transformation of its tertiary structure. In this work we use both experiment and simulation to better understand the driving forces underpinning this unusual process. We develop a modified Gō-model approach where we have included explicit representation of the side chains to realistically model the interaction between the secondary structure elements of the protein and the interface. Doing so allows for the study of the underlying energy landscape that governs the mechanism of Rsn-2 interfacial adsorption. Experimentally, we study targeted mutants of Rsn-2, using the Langmuir trough, pendant drop tensiometry, and circular dichroism, to demonstrate that the clam-shell model is correct. We find that Rsn-2 adsorption is in fact a two-step process: the hydrophobic N-terminal tail recruits the protein to the interface after which Rsn-2 undergoes an unfolding transition that maintains its secondary structure. Intriguingly, our simulations show that the conformation Rsn-2 adopts at an interface is an arrested state along the denaturation pathway. More generally, our computational model should prove a useful, and computationally efficient, tool in studying the dynamics and energetics of protein-interface interactions.

摘要

雨蛙素-2(Rsn-2)是一种在泡蟾的泡沫巢穴中发现的表面活性蛋白。先前的实验工作提出了一种吸附模型,该模型涉及蛋白质在界面处发生类似蛤壳状的异常展开。有趣的是,Rsn-2的二级结构元件并未随着其三级结构的大规模转变而发生变性。在这项工作中,我们同时使用实验和模拟来更好地理解支撑这一异常过程的驱动力。我们开发了一种改进的Gō模型方法,其中明确表示了侧链,以真实地模拟蛋白质二级结构元件与界面之间的相互作用。这样做有助于研究控制Rsn-2界面吸附机制的潜在能量景观。在实验方面,我们使用Langmuir槽、悬滴张力测定法和圆二色性研究了Rsn-2的靶向突变体,以证明蛤壳模型是正确的。我们发现Rsn-2的吸附实际上是一个两步过程:疏水的N末端尾巴将蛋白质招募到界面,之后Rsn-2经历保持其二级结构的展开转变。有趣的是,我们的模拟表明Rsn-2在界面处采用的构象是变性途径中的一种停滞状态。更一般地说,我们的计算模型应该是研究蛋白质-界面相互作用的动力学和能量学的一种有用且计算高效的工具。

相似文献

1
The Conformation of Interfacially Adsorbed Ranaspumin-2 Is an Arrested State on the Unfolding Pathway.
Biophys J. 2016 Aug 23;111(4):732-742. doi: 10.1016/j.bpj.2016.06.006.
2
Ranaspumin-2: structure and function of a surfactant protein from the foam nests of a tropical frog.
Biophys J. 2009 Jun 17;96(12):4984-92. doi: 10.1016/j.bpj.2009.03.044.
3
Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.
Phys Chem Chem Phys. 2017 Mar 22;19(12):8584-8594. doi: 10.1039/c6cp07261e.
4
Frog Foam Nest Protein Diversity and Synthesis.
J Exp Zool A Ecol Genet Physiol. 2016 Aug;325(7):425-33. doi: 10.1002/jez.2027. Epub 2016 Jul 27.
5
Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
J Phys Chem B. 2011 Aug 18;115(32):9813-22. doi: 10.1021/jp201474m. Epub 2011 Jul 26.
6
Model study of protein unfolding by interfaces.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 1):021907. doi: 10.1103/PhysRevE.69.021907. Epub 2004 Feb 26.
7
Unique crystal structure of a novel surfactant protein from the foam nest of the frog Leptodactylus vastus.
Chembiochem. 2014 Feb 10;15(3):393-8. doi: 10.1002/cbic.201300726. Epub 2014 Jan 17.
8
Foam nest components of the túngara frog: a cocktail of proteins conferring physical and biological resilience.
Proc Biol Sci. 2009 May 22;276(1663):1787-95. doi: 10.1098/rspb.2008.1939. Epub 2009 Feb 25.
9
Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers.
Adv Colloid Interface Sci. 2009 Aug 30;150(1):41-54. doi: 10.1016/j.cis.2009.05.002. Epub 2009 May 15.
10
pH stability and comparative evaluation of ranaspumin-2 foam for application in biochemical reactors.
Nanotechnology. 2013 Feb 8;24(5):055603. doi: 10.1088/0957-4484/24/5/055603. Epub 2013 Jan 16.

引用本文的文献

1
Matrix Protein TasA is Interfacially Active, but BslA Dominates Interfacial Film Properties.
Langmuir. 2024 Feb 27;40(8):4164-4173. doi: 10.1021/acs.langmuir.3c03163. Epub 2024 Feb 13.
2
Foam fractionation Tags (F-Tags) enabling surfactant-free, activity-preserving recovery of enzymes.
Appl Microbiol Biotechnol. 2024 Jan 17;108(1):140. doi: 10.1007/s00253-023-12837-1.
3
Frog foams and natural protein surfactants.
Colloids Surf A Physicochem Eng Asp. 2017 Dec 5;534:120-129. doi: 10.1016/j.colsurfa.2017.01.049.
4
The Diverse Structures and Functions of Surfactant Proteins.
Trends Biochem Sci. 2016 Jul;41(7):610-620. doi: 10.1016/j.tibs.2016.04.009. Epub 2016 May 27.

本文引用的文献

1
Partial Unwrapping and Histone Tail Dynamics in Nucleosome Revealed by Coarse-Grained Molecular Simulations.
PLoS Comput Biol. 2015 Aug 11;11(8):e1004443. doi: 10.1371/journal.pcbi.1004443. eCollection 2015 Aug.
2
Interfacial self-assembly of a bacterial hydrophobin.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5419-24. doi: 10.1073/pnas.1419016112. Epub 2015 Apr 13.
3
Interplay between partner and ligand facilitates the folding and binding of an intrinsically disordered protein.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15420-5. doi: 10.1073/pnas.1409122111. Epub 2014 Oct 13.
4
Proteins at air-water interfaces: a coarse-grained model.
Langmuir. 2014 Nov 4;30(43):12888-96. doi: 10.1021/la502465m. Epub 2014 Oct 24.
5
A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior.
PLoS Comput Biol. 2014 May 8;10(5):e1003606. doi: 10.1371/journal.pcbi.1003606. eCollection 2014 May.
6
BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13600-5. doi: 10.1073/pnas.1306390110. Epub 2013 Jul 31.
7
pH stability and comparative evaluation of ranaspumin-2 foam for application in biochemical reactors.
Nanotechnology. 2013 Feb 8;24(5):055603. doi: 10.1088/0957-4484/24/5/055603. Epub 2013 Jan 16.
8
The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function.
J Phys Chem B. 2012 Jul 26;116(29):8692-702. doi: 10.1021/jp300852d. Epub 2012 May 11.
9
SMOG@ctbp: simplified deployment of structure-based models in GROMACS.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W657-61. doi: 10.1093/nar/gkq498. Epub 2010 Jun 4.
10
Artificial photosynthesis in ranaspumin-2 based foam.
Nano Lett. 2010 Sep 8;10(9):3231-6. doi: 10.1021/nl100550k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验