Suppr超能文献

自支撑且高柔性 δ-MnO2@CNTs/CNTs 复合薄膜的合成与表征及其在超级电容器电极中的直接应用

Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes.

机构信息

New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou, Guangdong 510006, China.

State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510275, China.

出版信息

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23721-8. doi: 10.1021/acsami.6b07161. Epub 2016 Sep 2.

Abstract

Self-standing and flexible films worked as pseudocapacitor electrodes have been fabricated via a simple vacuum-filtration procedure to stack δ-MnO2@carbon nanotubes (CNTs) composite layer and pure CNT layer one by one with CNT layers ended. The lightweight CNTs layers served as both current collector and supporter, while the MnO2@CNTs composite layers with birnessite-type MnO2 worked as active layer and made the main contribution to the capacitance. At a low discharge current of 0.2 A g(-1), the layered films displayed a high areal capacitance of 0.293 F cm(-2) with a mass of 1.97 mg cm(-2) (specific capacitance of 149 F g(-1)) and thickness of only 16.5 μm, and hence an volumetric capacitance of about 177.5 F cm(-3). Moreover, the films also exhibited a good rate capability (only about 15% fading for the capacitance when the discharge current increased to 5 A g(-1) from 0.2 A g(-1)), outstanding cycling stability (about 90% of the initial capacitance was remained after 5,000 cycles) and high flexibility (almost no performance change when bended to different angles). In addition, the capacitance of the films increased proportionally with the stacked layers and the geometry area. E.g., when the stacked layers were three times many with a mass of 6.18 mg cm(-2), the areal capacitance of the films was increased to 0.764 F cm(-2) at 0.5 A g(-1), indicating a high electronic conductivity. It is not overstated to say that the flexible and lightweight layered films emerged high potential for future practical applications as supercapacitor electrodes.

摘要

通过简单的真空过滤程序,制备了自支撑且柔韧的薄膜作为赝电容器电极,该方法通过层层堆叠 δ-MnO2@碳纳米管(CNT)复合材料层和纯 CNT 层来实现,其中 CNT 层作为集流器和支撑体,而具有钠锰矿型 MnO2 的 MnO2@CNT 复合材料层作为活性层,对电容起主要贡献。在低放电电流 0.2 A g(-1) 下,分层薄膜的比电容高达 0.293 F cm(-2)(质量为 1.97 mg cm(-2)(比电容为 149 F g(-1)),厚度仅为 16.5 μm),因此体积电容约为 177.5 F cm(-3)。此外,该薄膜还表现出良好的倍率性能(当放电电流从 0.2 A g(-1) 增加到 5 A g(-1) 时,电容仅衰减 15%)、出色的循环稳定性(5000 次循环后初始电容保持率约为 90%)和高柔韧性(弯曲至不同角度时,性能几乎没有变化)。此外,薄膜的电容与堆叠层数和几何面积成正比增加。例如,当堆叠层数增加三倍,质量为 6.18 mg cm(-2) 时,在 0.5 A g(-1) 下,薄膜的面电容增加到 0.764 F cm(-2),表明其具有较高的电子电导率。可以毫不夸张地说,这种柔韧且轻质的分层薄膜有望成为超级电容器电极的实际应用的潜在材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验