Suppr超能文献

通过AF4经SL1进行的TBP装载是MLL融合依赖性转录中的主要限速步骤。

TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription.

作者信息

Okuda Hiroshi, Takahashi Satoshi, Takaori-Kondo Akifumi, Yokoyama Akihiko

机构信息

a Laboratory for Malignancy Control Research , Kyoto University Graduate School of Medicine , Kyoto , Japan.

b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan.

出版信息

Cell Cycle. 2016 Oct 17;15(20):2712-22. doi: 10.1080/15384101.2016.1222337. Epub 2016 Aug 26.

Abstract

Gene rearrangement of the mixed lineage leukemia (MLL) gene causes leukemia by inducing the constitutive expression of a gene subset normally expressed only in the immature haematopoietic progenitor cells. MLL gene rearrangements often generate fusion products of MLL and a component of the AF4 family/ENL family/P-TEFb (AEP) complex. MLL-AEP fusion proteins have the potential of constitutively recruiting the P-TEFb elongation complex. Thus, it is hypothesized that relieving the promoter proximal pausing of RNA polymerase II is the rate-limiting step of MLL fusion-dependent transcription. AEP also has the potential to recruit the mediator complex via MED26. We recently showed that AEP activates transcription initiation by facilitating TBP loading to the TATA element through the SL1 complex. In the present study, we show that the key activity responsible for the oncogenic property of MLL-AEP fusion proteins is the TBP loading activity, and not the mediator recruitment or transcriptional elongation activities. Thus, we propose that TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription.

摘要

混合谱系白血病(MLL)基因的重排通过诱导通常仅在未成熟造血祖细胞中表达的一个基因子集的组成性表达来引发白血病。MLL基因重排常常产生MLL与AF4家族/ENL家族/P-TEFb(AEP)复合物的一个组分的融合产物。MLL-AEP融合蛋白具有组成性募集P-TEFb延伸复合物的潜力。因此,有人提出,缓解RNA聚合酶II在启动子近端的暂停是MLL融合依赖性转录的限速步骤。AEP也具有通过MED26募集中介复合物的潜力。我们最近表明,AEP通过促进TBP经SL1复合物加载到TATA元件来激活转录起始。在本研究中,我们表明,负责MLL-AEP融合蛋白致癌特性的关键活性是TBP加载活性,而非中介募集或转录延伸活性。因此,我们提出,AF4经SL1进行的TBP加载是MLL融合依赖性转录中的主要限速步骤。

相似文献

1
TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription.
Cell Cycle. 2016 Oct 17;15(20):2712-22. doi: 10.1080/15384101.2016.1222337. Epub 2016 Aug 26.
3
Transcriptional activation by MLL fusion proteins in leukemogenesis.
Exp Hematol. 2017 Feb;46:21-30. doi: 10.1016/j.exphem.2016.10.014. Epub 2016 Nov 16.
6
The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis.
Cancer Cell. 2010 Jun 15;17(6):609-21. doi: 10.1016/j.ccr.2010.04.012.
7
Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia.
J Clin Invest. 2017 May 1;127(5):1918-1931. doi: 10.1172/JCI91406. Epub 2017 Apr 10.
8
Crosstalk between 14-3-3θ and AF4 enhances MLL-AF4 activity and promotes leukemia cell proliferation.
Cell Oncol (Dordr). 2019 Dec;42(6):829-845. doi: 10.1007/s13402-019-00468-6. Epub 2019 Sep 6.
9
The full transforming capacity of MLL-Af4 is interlinked with lymphoid lineage commitment.
Blood. 2017 Aug 17;130(7):903-907. doi: 10.1182/blood-2017-04-777185. Epub 2017 Jun 21.
10
AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydroxyvitamin D3.
Oncotarget. 2015 Sep 22;6(28):25784-800. doi: 10.18632/oncotarget.4703.

引用本文的文献

1
RNA-binding proteins of KHDRBS and IGF2BP families control the oncogenic activity of MLL-AF4.
Nat Commun. 2022 Nov 5;13(1):6688. doi: 10.1038/s41467-022-34558-1.
3
Leukemogenesis Model Using Retrovirus Transduction.
Bio Protoc. 2017 Dec 5;7(23):e2627. doi: 10.21769/BioProtoc.2627.
4
Myeloid Progenitor Transformation Assay.
Bio Protoc. 2017 Dec 5;7(23):e2626. doi: 10.21769/BioProtoc.2626.
5
HBO1-MLL interaction promotes AF4/ENL/P-TEFb-mediated leukemogenesis.
Elife. 2021 Aug 25;10:e65872. doi: 10.7554/eLife.65872.
6
Modeling by disruption and a selected-for partner for the nude locus.
EMBO Rep. 2021 Mar 3;22(3):e49804. doi: 10.15252/embr.201949804. Epub 2020 Dec 28.
7
Crosstalk between 14-3-3θ and AF4 enhances MLL-AF4 activity and promotes leukemia cell proliferation.
Cell Oncol (Dordr). 2019 Dec;42(6):829-845. doi: 10.1007/s13402-019-00468-6. Epub 2019 Sep 6.
8
Another piece of the puzzle added to understand t(4;11) leukemia better.
Haematologica. 2019 Jun;104(6):1098-1100. doi: 10.3324/haematol.2018.213397.
10
Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation.
Nat Chem Biol. 2018 Feb;14(2):163-170. doi: 10.1038/nchembio.2538. Epub 2017 Dec 18.

本文引用的文献

1
Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity.
Genes Dev. 2016 Jan 1;30(1):92-101. doi: 10.1101/gad.270413.115.
7
CDK6 levels regulate quiescence exit in human hematopoietic stem cells.
Cell Stem Cell. 2015 Mar 5;16(3):302-13. doi: 10.1016/j.stem.2015.01.017. Epub 2015 Feb 19.
8
AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation.
Cell. 2014 Oct 23;159(3):558-71. doi: 10.1016/j.cell.2014.09.049.
10
Requirement for CDK6 in MLL-rearranged acute myeloid leukemia.
Blood. 2014 Jul 3;124(1):13-23. doi: 10.1182/blood-2014-02-558114. Epub 2014 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验