Dhindsa Gurpreet K, Bhowmik Debsindhu, Goswami Monojoy, O'Neill Hugh, Mamontov Eugene, Sumpter Bobby G, Hong Liang, Ganesh Panchapakesan, Chu Xiang-Qiang
Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.
J Phys Chem B. 2016 Sep 29;120(38):10059-10068. doi: 10.1021/acs.jpcb.6b07511. Epub 2016 Sep 14.
Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.
无毒、生物相容性良好的纳米金刚石(ND)最近已被用于纳米药物最佳治疗用途的合理、系统设计中。然而,ND表面的亲水性强烈影响生物分子的结构和动力学,从而限制了ND的原位应用。因此,从分子水平上深入了解亲水性ND表面对生物分子的影响至关重要。对于转运RNA(tRNA),我们观察到在ND存在的情况下其动力学行为增强,这与通常在强相互作用界面处观察到的慢运动相反。我们利用中子散射实验和计算机模拟来证明tRNA在ND表面这种非典型的更快动力学。与不存在ND时相比,ND、tRNA和水之间强烈的吸引相互作用导致tRNA在ND面前出现不同的动力学行为和结构变化。我们的新发现可能为更安全、改进的药物递送平台提供新的设计原则。