Suresh Sundari, Schlecht Ulrich, Xu Weihong, Bray Walter, Miranda Molly, Davis Ronald W, Nislow Corey, Giaever Guri, Lokey R Scott, St Onge Robert P
Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304;
Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064;
Cold Spring Harb Protoc. 2016 Sep 1;2016(9):2016/9/pdb.top077701. doi: 10.1101/pdb.top077701.
Chemical-genetic interactions (CGIs) describe a phenomenon where the effects of a chemical compound (i.e., a small molecule) on cell growth are dependent on a particular gene. CGIs can reveal important functional information about genes and can also be powerful indicators of a compound's mechanism of action. Mapping CGIs can lead to the discovery of new chemical probes, which, in contrast to genetic perturbations, operate at the level of the gene product (or pathway) and can be fast-acting, tunable, and reversible. The simple culture conditions required for yeast and its rapid growth, as well as the availability of a complete set of barcoded gene deletion strains, facilitate systematic mapping of CGIs in this organism. This process involves two basic steps: first, screening chemical libraries to identify bioactive compounds affecting growth and, second, measuring the effects of these compounds on genome-wide collections of mutant strains. Here, we introduce protocols for both steps that have great potential for the discovery and development of new small-molecule tools and medicines.
化学-遗传相互作用(CGIs)描述了一种现象,即化合物(即小分子)对细胞生长的影响取决于特定基因。CGIs可以揭示有关基因的重要功能信息,并且还可以成为化合物作用机制的有力指标。绘制CGIs图谱可导致发现新的化学探针,与基因扰动不同,这些探针在基因产物(或途径)水平上起作用,并且可以快速起效、可调节且可逆。酵母所需的简单培养条件及其快速生长,以及全套条形码基因缺失菌株的可用性,便于在该生物体中系统地绘制CGIs图谱。这个过程涉及两个基本步骤:第一,筛选化学文库以鉴定影响生长的生物活性化合物;第二,测量这些化合物对全基因组突变菌株集合的影响。在这里,我们介绍了这两个步骤的方案,它们在发现和开发新的小分子工具和药物方面具有巨大潜力。