Salehi Sayed Ahmad, Parhi Keshab K, Riedel Marc D
Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States.
ACS Synth Biol. 2017 Jan 20;6(1):76-83. doi: 10.1021/acssynbio.5b00163. Epub 2016 Sep 21.
Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions.
化学反应网络(CRNs)为分子系统研究提供了一个基础模型。作为化学和生化系统分析的形式体系,CRNs作为分子计算模型重新受到关注。本文证明,通过一种新的编码方式,CRNs能够计算任何多项式函数集,唯一的限制是这些函数必须将单位区间映射到自身。这些多项式可以表示为伯恩斯坦基多项式的线性组合,其正系数小于或等于1。在所提出的编码方法中,每个变量用两种分子类型表示:0型和1型。该值是1型分子浓度与0型和1型分子浓度之和的比值。所提出的编码自然地利用了幂形式多项式到伯恩斯坦多项式的展开。本文给出了将标准表示中的任何输入转换为分数表示的分子编码器,以及将计算输出从分数表示转换为标准表示的解码器。首先针对一般的CRNs说明该方法;然后将为一个示例设计的化学反应映射到DNA链置换反应。