Suppr超能文献

基于晶体形态预测开发凝胶基传感器。

Developing a Gel-Based Sensor Using Crystal Morphology Prediction.

机构信息

Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States.

出版信息

J Am Chem Soc. 2016 Sep 21;138(37):12228-33. doi: 10.1021/jacs.6b06269. Epub 2016 Sep 6.

Abstract

The stimuli-responsive nature of molecular gels makes them appealing platforms for sensing. The biggest challenge is in identifying an appropriate gelator for each specific chemical or biological target. Due to the similarities between crystallization and gel formation, we hypothesized that the tools used to predict crystal morphologies could be useful for identifying gelators. Herein, we demonstrate that new gelators can be discovered by focusing on scaffolds with predicted high aspect ratio crystals. Using this morphology prediction method, we identified two promising molecular scaffolds containing lead atoms. Because solvent is largely ignored in morphology prediction but can play a major role in gelation, each scaffold needed to be structurally modified before six new Pb-containing gelators were discovered. One of these new gelators was developed into a robust sensor capable of detecting lead at the U.S. Environmental Protection Agency limit for paint (5000 ppm).

摘要

分子凝胶的刺激响应特性使其成为传感的理想平台。最大的挑战是为每个特定的化学或生物目标识别合适的凝胶剂。由于结晶和凝胶形成之间存在相似性,我们假设用于预测晶体形态的工具可能有助于识别凝胶剂。在此,我们通过关注具有预测的高纵横比晶体的支架来证明可以发现新的凝胶剂。使用这种形态预测方法,我们鉴定了两种含有铅原子的有前途的分子支架。由于溶剂在形态预测中基本被忽略,但在凝胶化中却起着重要作用,因此在发现六种新的含 Pb 凝胶剂之前,需要对每个支架进行结构修饰。其中一种新型凝胶剂被开发成一种强大的传感器,能够检测到美国环境保护署规定的油漆中铅的含量(5000ppm)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验