De Keersmaecker Herlinde, Fron Eduard, Rocha Susana, Kogure Takako, Miyawaki Atsushi, Hofkens Johan, Mizuno Hideaki
Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Heverlee, Belgium.
Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium.
Biophys J. 2016 Sep 6;111(5):1014-25. doi: 10.1016/j.bpj.2016.07.033.
Photoswitchable fluorescent proteins are capable of changing their spectral properties upon light irradiation, thus allowing one to follow a chosen subpopulation of molecules in a biological system. Recently, we revealed a photoinduced absorption band shift of LSSmOrange, which was originally engineered to have a large energy gap between excitation and emission bands. Here, we evaluated the performance of LSSmOrange as a fluorescent tracer in living cells. The absorption maximum of LSSmOrange in HeLa cells shifted from 437 nm to 553 nm upon illumination with a 405-, 445-, 458-, or 488-nm laser on a laser-scanning microscope, whereas the emission band remained same (∼570 nm). LSSmOrange behaves as a freely diffusing protein in living cells, enabling the use of the protein as a fluorescence tag for studies of protein dynamics. By targeting LSSmOrange in mitochondria, we observed an exchange of soluble molecules between the matrices upon mitochondrial fusion. Since converted and unconverted LSSmOrange proteins have similar emission spectra, this tracer offers unique possibilities for multicolor imaging. The fluorescence emission from LSSmOrange was spectrally distinguishable from that of eYFP and mRFP, and could be separated completely by applying linear unmixing. Furthermore, by using a femtosecond laser at 850 nm, we showed that a two-photon process could evoke a light-induced red shift of the absorption band of LSSmOrange, providing a strict confinement of the conversion volume in a three-dimensional space.
光开关荧光蛋白能够在光照射下改变其光谱特性,从而使人们能够追踪生物系统中选定的分子亚群。最近,我们揭示了LSSmOrange的光致吸收带位移,该蛋白最初被设计为在激发带和发射带之间具有较大的能隙。在此,我们评估了LSSmOrange作为活细胞中荧光示踪剂的性能。在激光扫描显微镜上用405、445、458或488纳米激光照射时,HeLa细胞中LSSmOrange的最大吸收峰从437纳米移至553纳米,而发射带保持不变(约570纳米)。LSSmOrange在活细胞中表现为一种自由扩散的蛋白,使得该蛋白能够用作研究蛋白质动力学的荧光标签。通过将LSSmOrange靶向线粒体,我们观察到线粒体融合时基质之间可溶性分子的交换。由于转化和未转化的LSSmOrange蛋白具有相似的发射光谱,这种示踪剂为多色成像提供了独特的可能性。LSSmOrange的荧光发射在光谱上与eYFP和mRFP的荧光发射可区分,并且可以通过应用线性解混完全分离。此外,通过使用850纳米的飞秒激光,我们表明双光子过程可以引发LSSmOrange吸收带的光致红移,在三维空间中提供对转化体积的严格限制。