Department of Colloid Chemistry, Research Campus Golm, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.
Chair of Technical Electrochemistry, Technische Universität München , Lichtenbergstrasse 4, 85748 Garching, Germany.
ACS Appl Mater Interfaces. 2016 Oct 5;8(39):26041-26050. doi: 10.1021/acsami.6b08222. Epub 2016 Sep 20.
Lithium oxygen batteries (LOBs) are a very promising upcoming technology which, however, still suffers from low lifespan and dramatic capacities fading. Solid discharge products increase the contact resistance and block the electrochemically active electrodes. The resulting high oxidative potentials and formation of LiCO due to electrolyte and carbon electrode decomposition at the positive electrode lead to irreversible deactivation of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) sites. Here we demonstrate a facile strategy for the scalable production of a new electrode structure constituted of vertically aligned carbon nanosheets and metal hydroxide (M(OH)@CNS) hybrid arrays, integrating both favorable ORR and OER active materials to construct bifunctional catalysts for LOBs. Excellent lithium-oxygen battery properties with high specific capacity of 5403 mAh g and 12123 mAh g referenced to the carbon and M(OH) weight, respectively, long cyclability, and low charge potentials are achieved in the resulting M(OH)@CNS cathode architecture. The properties are explained by improved O/ion transport properties and spatially limited precipitation of LiO nanoparticles inside interstitial cavities resulting in high reversibility. The strategy of creating ORR and OER bifunctional catalysts in a single conductive hybrid component may pave the way to new cathode architectures for metal air batteries.
锂氧电池(LOBs)是一种很有前途的新兴技术,但仍存在寿命短和容量急剧衰减的问题。固体放电产物会增加接触电阻并阻塞电化学活性电极。正极处电解质和碳电极分解导致的高氧化电势和 LiCO 的形成,会导致氧气析出反应(OER)和氧气还原反应(ORR)位点的不可逆失活。在这里,我们展示了一种简便的策略,可大规模生产由垂直排列的碳纳米片和金属氢氧化物(M(OH)@CNS)混合阵列组成的新型电极结构,将有利于 ORR 和 OER 的活性材料整合在一起,构建用于 LOBs 的双功能催化剂。在所得的 M(OH)@CNS 阴极结构中,实现了具有高比容量(分别参考碳和 M(OH)重量为 5403 mAh g 和 12123 mAh g)、长循环寿命和低充电电位的优异锂氧电池性能。通过改善 O/离子传输性能和在间隔腔内部空间限制 LiO 纳米颗粒的沉淀,实现了高可逆性,从而解释了这些性能。在单个导电混合组件中创建 ORR 和 OER 双功能催化剂的策略可能为金属空气电池的新型阴极结构铺平道路。