Suppr超能文献

理解和模拟哺乳动物细胞在流化床离心机中的保留情况。

Understanding and modeling retention of mammalian cells in fluidized bed centrifuges.

作者信息

Kelly William, Rubin Jonathan, Scully Jennifer, Kamaraju Hari, Wnukowski Piotr, Bhatia Ravinder

机构信息

Dept. of Chemical Engineering, Villanova University, Villanova, PA.

Cell Technology Pharmaceutical Development and Manufacturing Sciences, Janssen R&D, Spring House, PA.

出版信息

Biotechnol Prog. 2016 Nov;32(6):1520-1530. doi: 10.1002/btpr.2365. Epub 2016 Oct 6.

Abstract

Within the last decade, fully disposable centrifuge technologies, fluidized-bed centrifuges (FBC), have been introduced to the biologics industry. The FBC has found a niche in cell therapy where it is used to collect, concentrate, and then wash mammalian cell product while continuously discarding centrate. The goal of this research was to determine optimum FBC conditions for recovery of live cells, and to develop a mathematical model that can assist with process scaleup. Cell losses can occur during bed formation via flow channels within the bed. Experimental results with the kSep400 centrifuge indicate that, for a given volume processed: the bed height (a bed compactness indicator) is affected by RPM and flowrate, and dead cells are selectively removed during operation. To explain these results, two modeling approaches were used: (i) equating the centrifugal and inertial forces on the cells (i.e., a force balance model or FBM) and (ii) a two-phase computational fluid dynamics (CFD) model to predict liquid flow patterns and cell retention in the bowl. Both models predicted bed height vs. time reasonably well, though the CFD model proved more accurate. The flow patterns predicted by CFD indicate a Coriolis-driven flow that enhances uniformity of cells in the bed and may lead to cell losses in the outflow over time. The CFD-predicted loss of viable cells and selective removal of the dead cells generally agreed with experimental trends, but did over-predict dead cell loss by up to 3-fold for some of the conditions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1520-1530, 2016.

摘要

在过去十年中,全一次性使用的离心技术——流化床离心机(FBC)已被引入生物制品行业。FBC在细胞治疗领域找到了一席之地,用于收集、浓缩,然后洗涤哺乳动物细胞产品,同时不断丢弃离心液。本研究的目的是确定回收活细胞的最佳FBC条件,并开发一个可协助工艺放大的数学模型。在床层形成过程中,细胞可能会通过床层内的流动通道损失。kSep400离心机的实验结果表明,对于给定的处理体积:床层高度(床层紧实度指标)受转速和流速影响,并且在操作过程中死细胞会被选择性去除。为了解释这些结果,采用了两种建模方法:(i)使作用在细胞上的离心力和惯性力相等(即力平衡模型或FBM),以及(ii)两相计算流体动力学(CFD)模型来预测碗状物中的液体流动模式和细胞保留情况。尽管CFD模型被证明更准确,但两种模型对床层高度随时间变化的预测都相当不错。CFD预测的流动模式表明存在科里奥利驱动的流动,这种流动增强了床层中细胞的均匀性,并且随着时间的推移可能导致流出物中的细胞损失。CFD预测的活细胞损失和死细胞的选择性去除总体上与实验趋势一致,但在某些条件下,对死细胞损失的预测高估了多达3倍。© 2016美国化学工程师学会生物技术进展,32:1520 - 1530,2016。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验