Suppr超能文献

作为强效抗癫痫药物的 N-吡啶基和嘧啶苯甲酰胺的药效团建模、3D-QSAR 及计算机辅助的 ADME 预测

Pharmacophore modeling, 3D-QSAR, and in silico ADME prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents.

作者信息

Malik Ruchi, Mehta Pakhuri, Srivastava Shubham, Choudhary Bhanwar Singh, Sharma Manish

机构信息

a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Kishangarh, Ajmer , Rajasthan , India.

b School of Pharmacy , Maharishi Markandeshwar University , Sadopur, Ambala , Haryana , India.

出版信息

J Recept Signal Transduct Res. 2017 Jun;37(3):259-266. doi: 10.1080/10799893.2016.1217883. Epub 2016 Sep 8.

Abstract

Biological mechanism attributing mutations in KCNQ2/Q3 results in benign familial neonatal epilepsy (BFNE), a rare form of epilepsy and thus neglected. It offers a potential target for antiepileptic drug discovery. In the present work, a pharmacophore-based 3D-QSAR model was generated for a series of N-pyridyl and pyrimidine benzamides possessing KCNQ2/Q3 opening activity. The pharmacophore model generated contains one hydrogen bond donor (D), one hydrophobic (H), and two aromatic rings (R). They are the crucial molecular write-up detailing predicted binding efficacy of high affinity and low affinity ligands for KCNQ2/Q3 opening activity. Furthermore, it has been validated by using a biological correlation between pharmacophore hypothesis-based 3D-QSAR variables and functional fingerprints of openers responsible for the receptor binding and also by docking of these benzamides into the validated homology model. Excellent statistical computational tools of QSAR model such as good correlation coefficient (R>0.80), higher F value (F > 39), and excellent predictive power (Q > 0.7) with low standard deviation (SD <0.3) strongly suggest that the developed model could be used for prediction of antiepileptic activity of newer analogs. A preliminary pharmacokinetic profile of these derivatives was also performed on the basis of QikProp predictions.

摘要

KCNQ2/Q3基因的突变所导致的生物学机制引发了良性家族性新生儿癫痫(BFNE),这是一种罕见的癫痫类型,因此常被忽视。它为抗癫痫药物的研发提供了一个潜在靶点。在本研究中,针对一系列具有KCNQ2/Q3开放活性的N-吡啶基和嘧啶苯甲酰胺构建了基于药效团的3D-QSAR模型。所生成的药效团模型包含一个氢键供体(D)、一个疏水基团(H)和两个芳香环(R)。它们是详细描述高亲和力和低亲和力配体对KCNQ2/Q3开放活性预测结合效力的关键分子特征。此外,通过基于药效团假说的3D-QSAR变量与负责受体结合的开放剂功能指纹之间的生物学相关性,以及将这些苯甲酰胺对接至经过验证的同源模型,该模型得到了验证。QSAR模型出色的统计计算工具,如良好的相关系数(R>0.80)、较高的F值(F>39)以及具有低标准差(SD<0.3) 的出色预测能力(Q>0.7),有力地表明所开发的模型可用于预测新型类似物的抗癫痫活性。还基于QikProp预测对这些衍生物进行了初步的药代动力学分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验