Suppr超能文献

流形三角网格上双调和 B 样条的结点优化。

Knot Optimization for Biharmonic B-splines on Manifold Triangle Meshes.

出版信息

IEEE Trans Vis Comput Graph. 2017 Sep;23(9):2082-2095. doi: 10.1109/TVCG.2016.2605092. Epub 2016 Sep 1.

Abstract

Biharmonic B-splines, proposed by Feng and Warren, are an elegant generalization of univariate B-splines to planar and curved domains with fully irregular knot configuration. Despite the theoretic breakthrough, certain technical difficulties are imperative, including the necessity of Voronoi tessellation, the lack of analytical formulation of bases on general manifolds, expensive basis re-computation during knot refinement/removal, being applicable for simple domains only (e.g., such as euclidean planes, spherical and cylindrical domains, and tori). To ameliorate, this paper articulates a new biharmonic B-spline computing paradigm with a simple formulation. We prove that biharmonic B-splines have an equivalent representation, which is solely based on a linear combination of Green's functions of the bi-Laplacian operator. Consequently, without explicitly computing their bases, biharmonic B-splines can bypass the Voronoi partitioning and the discretization of bi-Laplacian, enable the computational utilities on any compact 2-manifold. The new representation also facilitates optimization-driven knot selection for constructing biharmonic B-splines on manifold triangle meshes. We develop algorithms for spline evaluation, data interpolation and hierarchical data decomposition. Our results demonstrate that biharmonic B-splines, as a new type of spline functions with theoretic and application appeal, afford progressive update of fully irregular knots, free of singularity, without the need of explicit parameterization, making it ideal for a host of graphics tasks on manifolds.

摘要

双调和 B 样条由 Feng 和 Warren 提出,是对单变量 B 样条到具有完全不规则结配置的平面和曲域的优雅推广。尽管取得了理论上的突破,但仍存在某些技术难题,包括 Voronoi 细分的必要性、一般流形上基函数的缺乏解析公式、在结细化/移除过程中昂贵的基函数重新计算以及仅适用于简单域(例如,欧几里得平面、球面和柱面以及环面)。为了改善这一点,本文提出了一种具有简单公式的新的双调和 B 样条计算范例。我们证明双调和 B 样条具有等效表示,该表示仅基于双拉普拉斯算子的格林函数的线性组合。因此,无需显式计算它们的基,双调和 B 样条可以绕过 Voronoi 分区和双拉普拉斯的离散化,在任何紧致 2 流形上启用计算工具。新的表示形式还为在流形三角网格上构建双调和 B 样条的优化驱动的结选择提供了便利。我们开发了用于样条评估、数据插值和层次数据分解的算法。我们的结果表明,双调和 B 样条作为一种具有理论和应用吸引力的新型样条函数,提供了完全不规则结的渐进更新,没有奇点,无需显式参数化,非常适合流形上的许多图形任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验