Stopper Daniel, Roth Roland, Hansen-Goos Hendrik
Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany.
J Phys Condens Matter. 2016 Nov 16;28(45):455101. doi: 10.1088/0953-8984/28/45/455101. Epub 2016 Sep 9.
Within the Asakura-Oosawa model, we study structural relaxation in mixtures of colloids and polymers subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self and distinct parts of the van Hove distribution function G(r,t) by means of dynamical density functional theory (DDFT) using an accurate free-energy functional based on Rosenfeld's fundamental measure theory. In order to remove unphysical interactions within the self part, we extend the recently proposed quenched functional framework (Stopper et al 2015 J. Chem. Phys. 143 181105) toward mixtures. In addition, we obtain results for the long-time self diffusion coefficients of colloids and polymers from dynamic Monte Carlo simulations, which we incorporate into the DDFT. From the resulting DDFT equations we calculate G(r, t), which we find to agree very well with our simulations. In particular, we examine the influence of polymers which are slow relative to the colloids-a scenario for which both DDFT and simulation show a significant peak forming at r = 0 in the colloid-colloid distribution function, akin to experimental findings involving gelation of colloidal suspensions. Moreover, we observe that, in the presence of slow polymers, the long-time self diffusivity of the colloids displays a maximum at an intermediate colloid packing fraction. This behavior is captured by a simple semi-empirical formula, which provides an excellent description of the data.
在朝仓-大泽模型中,我们研究了在过阻尼极限下受布朗运动影响的胶体和聚合物混合物中的结构弛豫。我们借助动态密度泛函理论(DDFT),使用基于罗森菲尔德基本测度理论的精确自由能泛函,得到了范霍夫分布函数G(r,t)的自部分和不同部分的时间演化。为了消除自部分内的非物理相互作用,我们将最近提出的淬火泛函框架(Stopper等人,2015年,《化学物理杂志》,143卷,181105页)扩展到混合物中。此外,我们通过动态蒙特卡罗模拟获得了胶体和聚合物的长时间自扩散系数结果,并将其纳入DDFT中。从得到的DDFT方程中,我们计算出G(r,t),发现它与我们的模拟结果非常吻合。特别是,我们研究了相对于胶体而言速度较慢的聚合物的影响——在这种情况下,DDFT和模拟都表明在胶体-胶体分布函数中r = 0处会形成一个显著的峰,这类似于涉及胶体悬浮液凝胶化的实验结果。此外,我们观察到,在存在慢速聚合物的情况下,胶体的长时间自扩散系数在中间胶体堆积分数处出现最大值。这种行为可以用一个简单的半经验公式来描述,该公式对数据提供了很好的拟合。