Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
Sci Rep. 2016 Sep 9;6:33081. doi: 10.1038/srep33081.
Due to the presence of strong static correlation effects and noncovalent interactions, accurate prediction of the electronic and hydrogen storage properties of Li-adsorbed acenes with n linearly fused benzene rings (n = 3-8) has been very challenging for conventional electronic structure methods. To meet the challenge, we study these properties using our recently developed thermally-assisted-occupation density functional theory (TAO-DFT) with dispersion corrections. In contrast to pure acenes, the binding energies of H2 molecules on Li-adsorbed acenes are in the ideal binding energy range (about 20 to 40 kJ/mol per H2). Besides, the H2 gravimetric storage capacities of Li-adsorbed acenes are in the range of 9.9 to 10.7 wt%, satisfying the United States Department of Energy (USDOE) ultimate target of 7.5 wt%. On the basis of our results, Li-adsorbed acenes can be high-capacity hydrogen storage materials for reversible hydrogen uptake and release at ambient conditions.
由于存在强烈的静态相关效应和非共价相互作用,对于传统的电子结构方法来说,准确预测具有 n 个线性融合苯环(n=3-8)的 Li 吸附并苯的电子和储氢性质极具挑战性。为了应对这一挑战,我们使用我们最近开发的具有色散校正的热辅助占据密度泛函理论(TAO-DFT)来研究这些性质。与纯并苯不同,H2 分子在 Li 吸附并苯上的结合能处于理想的结合能范围(每个 H2 约为 20 到 40 kJ/mol)。此外,Li 吸附并苯的 H2 重量储氢容量在 9.9 到 10.7 wt%之间,满足美国能源部(USDOE)的最终目标 7.5 wt%。基于我们的结果,Li 吸附并苯可以作为高容量储氢材料,用于在环境条件下可逆地吸收和释放氢气。