Department of Chemistry and ‡Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States.
ACS Appl Mater Interfaces. 2016 Oct 12;8(40):27012-27017. doi: 10.1021/acsami.6b08396. Epub 2016 Sep 30.
Printed, low-voltage poly(3-hexylthiophene) (P3HT) electrolyte-gated transistors (EGTs) have favorable quasi-static characteristics, including sub 2 V operation, carrier mobility (μ) of 1 cm/(V s), ON/OFF current ratio of 10, and static leakage current density of 10 A/cm. Here we study the dynamic performance of P3HT EGTs in which the semiconductor, dielectric, and gate electrode were deposited using aerosol-jet printing; the source and drain electrodes were patterned by conventional microlithography. With a source-to-drain separation of 2.5 μm, the highest theoretical achievable switching frequency is ∼10 MHz, assuming the movement of charge through the semiconductor is the limiting step. However, the measured maximum switching frequency of P3HT EGTs to date is ∼1 kHz, implying that another process is slowing the response. By systematically varying the device geometry, we show that the frequency is limited by the capacitance between the gate and drain (i.e., parasitic capacitance). The traditional scaling of switching time with the square of channel length (L) does not hold for P3HT EGTs. Rather, minimizing the size of the drain electrode increases the maximum switching speed. We achieve 10 kHz for P3HT EGTs with source/drain electrode dimensions of 2.5 μm × 50 μm and channel dimensions of 2.5 μm × 50 μm. Further improvements will require additional shrinkage of electrode dimensions as well as consideration of other factors such as ion gel thickness and carrier mobility.
印刷的低压聚(3-己基噻吩)(P3HT)电解质门控晶体管(EGTs)具有良好的准静态特性,包括 2V 以下的工作电压、1cm/(V s)的载流子迁移率(μ)、10 的导通/关断电流比和 10A/cm 的静态泄漏电流密度。在这里,我们研究了 P3HT EGT 的动态性能,其中半导体、介电层和栅电极是通过气溶胶喷射印刷沉积的;源极和漏极是通过传统的光刻技术进行图案化的。在源极到漏极的距离为 2.5μm 的情况下,假设电荷通过半导体的运动是限制步骤,那么最高可达的理论开关频率约为 10MHz。然而,迄今为止测量的 P3HT EGT 的最大开关频率约为 1kHz,这意味着另一个过程正在减缓响应。通过系统地改变器件几何形状,我们表明频率受到栅极和漏极之间的电容(即寄生电容)的限制。传统的开关时间与沟道长度(L)平方的缩放关系不适用于 P3HT EGT。相反,减小漏极电极的尺寸可以提高最大开关速度。我们实现了 P3HT EGT 的 10kHz,源/漏极电极尺寸为 2.5μm×50μm,沟道尺寸为 2.5μm×50μm。进一步的改进需要进一步缩小电极尺寸,并考虑其他因素,如离聚物凝胶厚度和载流子迁移率。