Murugesan Sathiyamoorthy, Stöger Berthold, Weil Matthias, Veiros Luis F, Kirchner Karl
Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology , Getreidemarkt 9, A-1060 Vienna, Austria.
Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa , Av. Rovisco Pais No. 1, 1049-001 Lisboa, Portugal.
Organometallics. 2015 Apr 13;34(7):1364-1372. doi: 10.1021/acs.organomet.5b00075. Epub 2015 Mar 16.
The 15e square-planar complexes [Co(PCP-Pr)Cl] () and [Co(PCP-Bu)Cl] (), respectively, react readily with NaBH to afford complexes [Co(PCP-Pr)(η-BH)] () and [Co(PCP-Bu)(η-BH)] () in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μ consistent with a d low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCP-Pr)(η-BH)] () via two different synthetic routes. One utilizes [Ni(PCP-Pr)Cl] () and NaBH, the second one makes use of the hydride complex [Ni(PCP-Pr)H] () and BH·THF. In both cases, is obtained in high yields. In contrast to and , the borohydride ligand is asymmetrically bound to the nickel center but still in an η-mode. [Ni(PCP-Pr)(η-BH)] () loses readily BH at elevated temperatures in the presence of NEt to form . Complexes and are both diamagnetic and were characterized by a combination of H, C{H}, and P{H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes and react with CO to give the formate complex [Ni(PCP-Pr)(OC(C=O)H] (). The extrusion of BH from [Co(PCP-Pr)(η-BH)] () and [Ni(PCP-Pr)(η-BH)] () with the aid of NH to yield the respective hydride complexes [Co(PCP-Pr)H] and [Ni(PCP-Pr)H] () and BHNH was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co(PCP-Pr)(η-BH)] () and [Ni(PCP-Pr)(η-BH)] () were established by DFT computations.
十五个平面正方形配合物[Co(PCP-Pr)Cl]()和[Co(PCP-Bu)Cl]()分别与硼氢化钠迅速反应,以高产率得到配合物[Co(PCP-Pr)(η²-BH₄)]()和[Co(PCP-Bu)(η²-BH₄)](),红外光谱、X射线晶体学和元素分析证实了这一点。硼氢化物配体以η²-方式对称地与钴中心结合。这些化合物是顺磁性的,有效磁矩分别为2.0(1)和2.1(1) μ,与对应一个未成对电子的d低自旋体系一致。这些配合物都不与CO反应生成甲酸盐配合物。为了进行结构和反应性比较,我们通过两种不同的合成路线制备了类似的镍(II)硼氢化物配合物[Ni(PCP-Pr)(η²-BH₄)]()。一种方法利用[Ni(PCP-Pr)Cl]()和硼氢化钠,另一种方法使用氢化物配合物[Ni(PCP-Pr)H]()和BH₃·THF。在这两种情况下,都能以高产率得到产物。与 和 不同,硼氢化物配体以不对称方式与镍中心结合,但仍为η²-模式。[Ni(PCP-Pr)(η²-BH₄)]()在三乙胺存在下于升高的温度下容易失去BH₃形成 。配合物 和 都是抗磁性的,通过¹H、¹³C{¹H}和³¹P{¹H}核磁共振、红外光谱和元素分析进行了表征。此外,通过X射线晶体学确定了这些化合物的结构。配合物 和 与CO反应生成甲酸盐配合物[Ni(PCP-Pr)(OC(O)H)]()。借助氨从[Co(PCP-Pr)(η²-BH₄)]()和[Ni(PCP-Pr)(η²-BH₄)]()中挤出BH₃以生成相应的氢化物配合物[Co(PCP-Pr)H]和[Ni(PCP-Pr)H]()以及BH₃·NH₃,通过密度泛函理论计算进行了研究,结果表明镍氢化物的形成在热力学上是有利的,而钴(II)氢化物的形成与实验结果一致,是不利的。通过密度泛函理论计算确定了[Co(PCP-Pr)(η²-BH₄)]()和[Ni(PCP-Pr)(η²-BH₄)]()中硼氢化物配体的电子结构和键合情况。