Fenaux Martijn, Lin Xiaodong, Yokokawa Fumiaki, Sweeney Zachary, Saunders Oliver, Xie Lili, Lim Siew Pheng, Uteng Marianne, Uehara Kyoko, Warne Robert, Gang Wang, Jones Christopher, Yendluri Satya, Gu Helen, Mansfield Keith, Boisclair Julie, Heimbach Tycho, Catoire Alexandre, Bracken Kathryn, Weaver Margaret, Moser Heinz, Zhong Weidong
Novartis Institutes for BioMedical Research, Emeryville, California, USA
Novartis Institutes for BioMedical Research, Emeryville, California, USA.
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7077-7085. doi: 10.1128/AAC.01253-16. Print 2016 Dec.
Nucleoside or nucleotide inhibitors are a highly successful class of antivirals due to selectivity, potency, broad coverage, and high barrier to resistance. Nucleosides are the backbone of combination treatments for HIV, hepatitis B virus, and, since the FDA approval of sofosbuvir in 2013, also for hepatitis C virus (HCV). However, many promising nucleotide inhibitors have advanced to clinical trials only to be terminated due to unexpected toxicity. Here we describe the in vitro pharmacology of compound 1, a monophosphate prodrug of a 2'-ethynyluridine developed for the treatment of HCV. Compound 1 inhibits multiple HCV genotypes in vitro (50% effective concentration [EC], 0.05 to 0.1 μM) with a selectivity index of >300 (50% cytotoxic concentration [CC], 30 μM in MT-4 cells). The active triphosphate metabolite of compound 1, compound 2, does not inhibit human α, β, or γ DNA polymerases but was a substrate for incorporation by the human mitochondrial RNA polymerase (POLRMT). In dog, the oral administration of compound 1 resulted in elevated serum liver enzymes and microscopic changes in the liver. Transmission electron microscopy showed significant mitochondrial swelling and lipid accumulation in hepatocytes. Gene expression analysis revealed dose-proportional gene signature changes linked to loss of hepatic function and increased mitochondrial dysfunction. The potential of in vivo toxicity through mitochondrial polymerase incorporation by nucleoside analogs has been previously shown. This study shows that even moderate levels of nucleotide analog incorporation by POLRMT increase the risk of in vivo mitochondrial dysfunction. Based on these results, further development of compound 1 as an anti-HCV compound was terminated.
核苷或核苷酸抑制剂是一类非常成功的抗病毒药物,因其具有选择性、高效性、广泛的覆盖范围和高耐药屏障。核苷是治疗人类免疫缺陷病毒(HIV)、乙型肝炎病毒的联合治疗方案的核心成分,并且自2013年美国食品药品监督管理局(FDA)批准索磷布韦以来,也成为丙型肝炎病毒(HCV)联合治疗方案的核心成分。然而,许多有前景的核苷酸抑制剂虽已进入临床试验阶段,但却因意外的毒性而终止。在此,我们描述了化合物1的体外药理学特性,它是一种为治疗HCV而研发的2'-乙炔基尿苷单磷酸前药。化合物1在体外对多种HCV基因型具有抑制作用(半数有效浓度[EC50]为0.05至0.1μM),选择性指数>300(半数细胞毒性浓度[CC50],在MT-4细胞中为30μM)。化合物1的活性三磷酸代谢产物化合物2,并不抑制人类α、β或γ DNA聚合酶,但却是人类线粒体RNA聚合酶(POLRMT)的掺入底物。在犬类动物中,口服化合物1导致血清肝酶升高以及肝脏出现微观变化。透射电子显微镜显示肝细胞中线粒体显著肿胀和脂质蓄积。基因表达分析揭示了与肝功能丧失和线粒体功能障碍增加相关的剂量依赖性基因特征变化。此前已表明核苷类似物通过线粒体聚合酶掺入具有体内毒性的可能性。本研究表明,即使是POLRMT对核苷酸类似物的适度掺入水平也会增加体内线粒体功能障碍的风险。基于这些结果,化合物1作为抗HCV化合物的进一步研发被终止。