Yi Jun, Campbell Adam L O, Richter-Addo George B
Department of Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Road, Nanjing, Jiangsu Province, 210094, PR China; Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, 73019, USA.
Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, 73019, USA.
Nitric Oxide. 2016 Nov 30;60:69-75. doi: 10.1016/j.niox.2016.09.004. Epub 2016 Sep 16.
Bacteria utilize a heme/non-heme enzyme system to detoxify nitric oxide (NO) to NO. In order to probe the capacity of a single-heme system to mediate this NO-to-NO transformation, various scenarios for addition of electrons, protons, and a second NO molecule to a heme nitrosyl to generate NO were explored by density functional theory calculations. We describe, utilizing this single-heme system, several stepwise intermediates along pathways that enable the critical N-N bond formation step yielding the desired Fe-NO product. We also report a hitherto unreported directional second protonation that results in either productive NO formation with loss of water, or formation of a non-productive hyponitrous acid adduct Fe{HONNOH}.
细菌利用一种血红素/非血红素酶系统将一氧化氮(NO)解毒为亚硝酸盐(NO₂⁻)。为了探究单血红素系统介导这种NO到NO₂⁻转化的能力,通过密度泛函理论计算探索了向血红素亚硝酰添加电子、质子和第二个NO分子以生成NO₂⁻的各种情况。我们利用这个单血红素系统描述了沿着途径的几个逐步中间体,这些途径能够实现关键的N-N键形成步骤,产生所需的Fe-NO₂⁻产物。我们还报告了一种迄今未报道的定向第二次质子化,它要么导致生成产物性的NO并失去水,要么形成非产物性的连二次硝酸加合物Fe{HONNOH}。