Inoue Yoshio, Guérif Martine, Baret Frédéric, Skidmore Andrew, Gitelson Anatoly, Schlerf Martin, Darvishzadeh Roshanak, Olioso Albert
National Institute for Agro-Environmental Sciences, Tsukuba, Japan.
INRA, UMR1114, EMMAH, F-84914, Avignon, France.
Plant Cell Environ. 2016 Dec;39(12):2609-2623. doi: 10.1111/pce.12815. Epub 2016 Sep 21.
Canopy chlorophyll content (CCC) is an essential ecophysiological variable for photosynthetic functioning. Remote sensing of CCC is vital for a wide range of ecological and agricultural applications. The objectives of this study were to explore simple and robust algorithms for spectral assessment of CCC. Hyperspectral datasets for six vegetation types (rice, wheat, corn, soybean, sugar beet and natural grass) acquired in four locations (Japan, France, Italy and USA) were analysed. To explore the best predictive model, spectral index approaches using the entire wavebands and multivariable regression approaches were employed. The comprehensive analysis elucidated the accuracy, linearity, sensitivity and applicability of various spectral models. Multivariable regression models using many wavebands proved inferior in applicability to different datasets. A simple model using the ratio spectral index (RSI; R815, R704) with the reflectance at 815 and 704 nm showed the highest accuracy and applicability. Simulation analysis using a physically based reflectance model suggested the biophysical soundness of the results. The model would work as a robust algorithm for canopy-chlorophyll-metre and/or remote sensing of CCC in ecosystem and regional scales. The predictive-ability maps using hyperspectral data allow not only evaluation of the relative significance of wavebands in various sensors but also selection of the optimal wavelengths and effective bandwidths.
冠层叶绿素含量(CCC)是光合功能的一个重要生态生理变量。CCC的遥感对于广泛的生态和农业应用至关重要。本研究的目的是探索用于CCC光谱评估的简单且稳健的算法。分析了在四个地点(日本、法国、意大利和美国)获取的六种植被类型(水稻、小麦、玉米、大豆、甜菜和天然草)的高光谱数据集。为了探索最佳预测模型,采用了使用全波段的光谱指数方法和多变量回归方法。综合分析阐明了各种光谱模型的准确性、线性、敏感性和适用性。使用多个波段的多变量回归模型在不同数据集的适用性方面表现较差。一个使用815和704nm处反射率的比率光谱指数(RSI;R815,R704)的简单模型显示出最高的准确性和适用性。使用基于物理的反射率模型的模拟分析表明了结果的生物物理合理性。该模型可作为生态系统和区域尺度上冠层叶绿素仪和/或CCC遥感的稳健算法。使用高光谱数据的预测能力图不仅可以评估各种传感器中波段的相对重要性,还可以选择最佳波长和有效带宽。