Suppr超能文献

使用统计形状模型对下肢肌肉骨骼模型进行非线性缩放。

Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

作者信息

Nolte Daniel, Tsang Chui Kit, Zhang Kai Yu, Ding Ziyun, Kedgley Angela E, Bull Anthony M J

机构信息

Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.

出版信息

J Biomech. 2016 Oct 3;49(14):3576-3581. doi: 10.1016/j.jbiomech.2016.09.005. Epub 2016 Sep 14.

Abstract

Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods.

摘要

对于肌肉骨骼模型而言,精确的肌肉几何形状对于实现准确的个体特异性模拟非常重要。通常,线性缩放用于获取个体化的肌肉几何形状。更先进的方法包括使用分段骨表面的非线性缩放以及从医学图像中手动或半自动数字化肌肉路径。在本研究中,提出了一种将非线性缩放与使用统计形状建模重建骨表面相结合的新缩放方法。使用股骨和胫骨/腓骨的统计形状模型(SSMs)来重建九名受试者的骨表面。通过使用非线性变换将手动数字化的肌肉路径变形为SSMs的平均形状来创建参考模型,并计算个体间的变异性。从三个参考模型创建肌肉附着点和通过点的个体特异性模型。通过计算缩放模型与手动数字化模型之间的差异来评估准确性。定义肌肉路径的点在大腿和小腿处显示出较大的个体间变异性——高达26毫米;发现这限制了所有研究的缩放方法的准确性。与典型的线性缩放方法相比,使用非线性缩放可使大腿的个体特异性肌肉点重建误差降低9%至20%。我们得出结论,所提出的非线性缩放方法比线性缩放方法更准确。因此,当与使用统计形状模型从不完整或分散的几何数据重建骨表面的能力相结合时,我们提出的方法是线性缩放方法的一种替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验