Lukas A, Ferrier G R
Department of Pharmacology, Dalhousie University, Halifax, N.S., Canada.
Can J Physiol Pharmacol. 1989 Jul;67(7):765-71. doi: 10.1139/y89-122.
The aim of this study was to assess the direct effects of norepinephrine on mechanisms of arrhythmia induced by conditions of ischemia followed by reperfusion. Isolated canine Purkinje fiber-papillary muscle preparations were studied using standard microelectrode techniques. Tissues were superfused for 40 min with a solution simulating "ischemia" (i.e., hypoxic, acidotic, elevated lactate, and zero substrate) and then "reperfused" for 60 min. Ischemia produced a moderate loss of membrane potential in both tissues. Reperfusion resulted in rapid polarization of the tissues, which was accompanied by oscillatory afterpotentials and aftercontractions in 6 of 12 and 4 of 12 Purkinje fibers, respectively. This was followed by a progressive loss of membrane potential and inexcitability in Purkinje fibers. Recovery was associated with activity resembling depolarization-induced automaticity in 4 of 12 fibers. Addition of norepinephrine (0.5 microM) to the ischemic and reperfusion solutions altered primarily the reperfusion responses. Oscillatory afterpotentials and aftercontractions were larger and occurred in 8 of 8 and 6 of 8 Purkinje fibers, respectively. Norepinephrine also prevented or blunted the progressive depolarization to inexcitability in Purkinje tissues and increased automaticity occurring at low (depolarization-induced automaticity) and more polarized membrane potentials (enhanced normal pacemaker activity). This study demonstrates that norepinephrine exacerbates several potential mechanisms of arrhythmia elicited by reperfusion in canine Purkinje tissues.