Pierozan Paula, Biasibetti Helena, Schmitz Felipe, Ávila Helena, Parisi Mariana M, Barbe-Tuana Florencia, Wyse Angela T S, Pessoa-Pureur Regina
Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Biochim Biophys Acta. 2016 Dec;1863(12):3001-3014. doi: 10.1016/j.bbamcr.2016.09.014. Epub 2016 Sep 20.
QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.
喹啉是一种谷氨酸激动剂,在细胞骨架调节异常中起作用,这与大鼠的神经退行性变有关。在本研究中,我们重点关注了小胶质细胞激活、FGF2/Erk信号传导、缝隙连接(GJs)、炎症参数以及氧化还原失衡对喹啉处理的大鼠纹状体神经细胞细胞骨架动力学的影响。在喹啉处理的原代星形胶质细胞或神经元中,FGF-2/Erk信号传导未改变,但细胞骨架遭到破坏。在共培养的星形胶质细胞和神经元中,喹啉激活的FGF2/Erk信号传导可防止细胞骨架重塑。在混合培养物(星形胶质细胞、神经元、小胶质细胞)中,喹啉诱导的FGF-2水平升高未能激活Erk并促进细胞骨架不稳定。喹啉在混合培养物中的作用涉及Erk激活上游的氧化还原失衡。原代星形胶质细胞和混合培养物中连接蛋白43(Cx43)免疫含量降低和功能性GJs减少也与细胞骨架破坏同时出现。我们推测,在相互作用的星形胶质细胞和神经元中,通过激活FGF-2/Erk信号传导以及通过GJs进行适当的细胞间相互作用,细胞骨架可抵御喹啉的损伤。在混合培养物中,FGF-2/Erk信号传导被与小胶质细胞激活和细胞通讯紊乱相关的氧化还原失衡所阻断,从而破坏细胞骨架。因此,喹啉信号激活了不同的机制,这些机制可稳定或破坏培养的纹状体星形胶质细胞和神经元的细胞骨架,并且胶质细胞在这些维持或破坏信号通路和细胞间相互作用组合的反应中起关键作用。综上所述,我们的研究结果揭示了星形胶质细胞、神经元和小胶质细胞的主动相互作用在喹啉神经毒性中的复杂作用。