Suppr超能文献

利用中红外和拉曼光谱数据进行连续统计建模以快速检测特级初榨橄榄油掺假

Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data.

作者信息

Georgouli Konstantia, Martinez Del Rincon Jesus, Koidis Anastasios

机构信息

Queens University Belfast, Institute for Global Food Security, Belfast, Northern Ireland, UK.

Queens University Belfast, Institute of Electronics, Communications and Information Technology, Belfast, Northern Ireland, UK.

出版信息

Food Chem. 2017 Feb 15;217:735-742. doi: 10.1016/j.foodchem.2016.09.011. Epub 2016 Sep 8.

Abstract

The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques.

摘要

这项工作的主要目标是开发一种新颖的降维技术,作为集成模式识别解决方案的一部分,该解决方案能够基于光谱化学指纹识别低百分比掺假物,如特级初榨橄榄油中的榛子油。提出了一种新颖的连续局部保持投影(CLPP)技术,该技术允许将内部生产的混合物的连续性质建模为数据序列而非离散点。数据流形连续结构的保持能够更好地可视化这个被研究的分类问题,并有助于更准确地利用流形来检测掺假物。所提出技术的性能通过两种不同的光谱技术(拉曼光谱和傅里叶变换红外光谱,FT-IR)进行了验证。在所研究的所有情况下,发现CLPP与k近邻(kNN)算法相结合的性能优于任何其他现有最先进的模式识别技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验