Suppr超能文献

基于鲁棒径向基函数神经网络反步控制的不确定无人飞艇自适应积分视线路径跟踪

Adaptive integral LOS path following for an unmanned airship with uncertainties based on robust RBFNN backstepping.

作者信息

Zheng Zewei, Zou Yao

机构信息

The Seventh Research Division, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.

出版信息

ISA Trans. 2016 Nov;65:210-219. doi: 10.1016/j.isatra.2016.09.008. Epub 2016 Sep 21.

Abstract

This paper investigates the path following control problem for an unmanned airship in the presence of unknown wind and uncertainties. The backstepping technique augmented by a robust adaptive radial basis function neural network (RBFNN) is employed as the main control framework. Based on the horizontal dynamic model of the airship, an improved adaptive integral line-of-sight (LOS) guidance law is first proposed, which suits any parametric paths. The guidance law calculates the desired yaw angle and estimates the wind. Then the controller is extended to cope with the airship yaw tracking and velocity control by resorting to the augmented backstepping technique. The uncertainties of the dynamics are compensated by using the robust RBFNNs. Each robust RBFNN utilizes an nth-order smooth switching function to combine a conventional RBFNN with a robust control. The conventional RBFNN dominates in the neural active region, while the robust control retrieves the transient outside the active region, so that the stability range can be widened. Stability analysis shows that the controlled closed-loop system is globally uniformly ultimately bounded. Simulations are provided to validate the effectiveness of the proposed control approach.

摘要

本文研究了存在未知风及不确定性情况下无人飞艇的路径跟踪控制问题。采用由鲁棒自适应径向基函数神经网络(RBFNN)增强的反步技术作为主要控制框架。基于飞艇的水平动力学模型,首先提出了一种改进的自适应积分视线(LOS)制导律,该制导律适用于任何参数路径。该制导律计算期望偏航角并估计风。然后借助增强反步技术扩展控制器以处理飞艇偏航跟踪和速度控制。利用鲁棒RBFNN补偿动力学的不确定性。每个鲁棒RBFNN利用一个n阶平滑切换函数将传统RBFNN与鲁棒控制相结合。传统RBFNN在神经活动区域起主导作用,而鲁棒控制在活动区域之外恢复瞬态,从而可拓宽稳定范围。稳定性分析表明,受控闭环系统全局一致最终有界。通过仿真验证了所提控制方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验