Suppr超能文献

γ节律增益调制

Gamma-Rhythmic Gain Modulation.

作者信息

Ni Jianguang, Wunderle Thomas, Lewis Christopher Murphy, Desimone Robert, Diester Ilka, Fries Pascal

机构信息

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, Max-von-Laue-Straße 4, 60438 Frankfurt, Germany.

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.

出版信息

Neuron. 2016 Oct 5;92(1):240-251. doi: 10.1016/j.neuron.2016.09.003. Epub 2016 Sep 22.

Abstract

Cognition requires the dynamic modulation of effective connectivity, i.e., the modulation of the postsynaptic neuronal response to a given input. If postsynaptic neurons are rhythmically active, this might entail rhythmic gain modulation, such that inputs synchronized to phases of high gain benefit from enhanced effective connectivity. We show that visually induced gamma-band activity in awake macaque area V4 rhythmically modulates responses to unpredictable stimulus events. This modulation exceeded a simple additive superposition of a constant response onto ongoing gamma-rhythmic firing, demonstrating the modulation of multiplicative gain. Gamma phases leading to strongest neuronal responses also led to shortest behavioral reaction times, suggesting functional relevance of the effect. Furthermore, we find that constant optogenetic stimulation of anesthetized cat area 21a produces gamma-band activity entailing a similar gain modulation. As the gamma rhythm in area 21a did not spread backward to area 17, this suggests that postsynaptic gamma is sufficient for gain modulation.

摘要

认知需要有效连接性的动态调制,即对给定输入的突触后神经元反应的调制。如果突触后神经元有节律地活动,这可能需要节律性增益调制,使得与高增益相位同步的输入能从增强的有效连接性中受益。我们表明,清醒猕猴V4区视觉诱发的γ波段活动有节律地调制对不可预测刺激事件的反应。这种调制超过了将恒定反应简单叠加到正在进行的γ节律性放电上,证明了乘法增益的调制。导致最强神经元反应的γ相位也导致最短的行为反应时间,表明了这种效应的功能相关性。此外,我们发现对麻醉猫21a区进行持续的光遗传学刺激会产生γ波段活动,且伴有类似的增益调制。由于21a区的γ节律不会向后传播到17区,这表明突触后γ足以进行增益调制。

相似文献

1
Gamma-Rhythmic Gain Modulation.
Neuron. 2016 Oct 5;92(1):240-251. doi: 10.1016/j.neuron.2016.09.003. Epub 2016 Sep 22.
2
Stimulus repetition modulates gamma-band synchronization in primate visual cortex.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3626-31. doi: 10.1073/pnas.1309714111. Epub 2014 Feb 19.
3
Gamma Synchronization between V1 and V4 Improves Behavioral Performance.
Neuron. 2018 Nov 21;100(4):953-963.e3. doi: 10.1016/j.neuron.2018.09.019. Epub 2018 Oct 11.
4
A stochastic model of input effectiveness during irregular gamma rhythms.
J Comput Neurosci. 2016 Feb;40(1):85-101. doi: 10.1007/s10827-015-0583-3. Epub 2015 Nov 26.
5
A Distinct Class of Bursting Neurons with Strong Gamma Synchronization and Stimulus Selectivity in Monkey V1.
Neuron. 2020 Jan 8;105(1):180-197.e5. doi: 10.1016/j.neuron.2019.09.039. Epub 2019 Nov 12.
6
Top-Down Beta Enhances Bottom-Up Gamma.
J Neurosci. 2017 Jul 12;37(28):6698-6711. doi: 10.1523/JNEUROSCI.3771-16.2017. Epub 2017 Jun 7.
7
A theta rhythm in macaque visual cortex and its attentional modulation.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5614-E5623. doi: 10.1073/pnas.1719433115. Epub 2018 May 30.
8
Visual Stimulus Content in V4 Is Conveyed by Gamma-Rhythmic Information Packages.
J Neurosci. 2020 Dec 9;40(50):9650-9662. doi: 10.1523/JNEUROSCI.0689-20.2020. Epub 2020 Nov 6.
9
A microsaccadic rhythm modulates gamma-band synchronization and behavior.
J Neurosci. 2009 Jul 29;29(30):9471-80. doi: 10.1523/JNEUROSCI.1193-09.2009.

引用本文的文献

3
Human cortical high-gamma power scales with movement rate in healthy participants and stroke survivors.
J Physiol. 2025 Feb;603(4):873-893. doi: 10.1113/JP286873. Epub 2025 Jan 9.
4
Mystery of gamma wave stimulation in brain disorders.
Mol Neurodegener. 2024 Dec 18;19(1):96. doi: 10.1186/s13024-024-00785-x.
5
Dissociation of Attentional State and Behavioral Outcome Using Local Field Potentials.
eNeuro. 2024 Nov 8;11(11). doi: 10.1523/ENEURO.0327-24.2024. Print 2024 Nov.
6
Propofol-mediated loss of consciousness disrupts predictive routing and local field phase modulation of neural activity.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2315160121. doi: 10.1073/pnas.2315160121. Epub 2024 Oct 7.
7
Orthogonality of sensory and contextual categorical dynamics embedded in a continuum of responses from the second somatosensory cortex.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2316765121. doi: 10.1073/pnas.2316765121. Epub 2024 Jul 11.
8
The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations.
PLoS Comput Biol. 2024 Jun 27;20(6):e1012190. doi: 10.1371/journal.pcbi.1012190. eCollection 2024 Jun.
9
Top-down modulation of visual cortical stimulus encoding and gamma independent of firing rates.
bioRxiv. 2024 Apr 12:2024.04.11.589006. doi: 10.1101/2024.04.11.589006.
10

本文引用的文献

1
Millisecond Coupling of Local Field Potentials to Synaptic Currents in the Awake Visual Cortex.
Neuron. 2016 Apr 6;90(1):35-42. doi: 10.1016/j.neuron.2016.02.034. Epub 2016 Mar 24.
3
Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.
Eur J Neurosci. 2016 May;43(10):1286-96. doi: 10.1111/ejn.13126. Epub 2015 Dec 16.
4
Rhythms for Cognition: Communication through Coherence.
Neuron. 2015 Oct 7;88(1):220-35. doi: 10.1016/j.neuron.2015.09.034.
5
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.
PLoS Biol. 2015 Sep 22;13(9):e1002257. doi: 10.1371/journal.pbio.1002257. eCollection 2015.
6
Coordinated Neuronal Activity Enhances Corticocortical Communication.
Neuron. 2015 Aug 19;87(4):827-39. doi: 10.1016/j.neuron.2015.07.026.
7
Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
J Neurosci. 2015 Jul 15;35(28):10236-51. doi: 10.1523/JNEUROSCI.0828-15.2015.
8
Visual areas exert feedforward and feedback influences through distinct frequency channels.
Neuron. 2015 Jan 21;85(2):390-401. doi: 10.1016/j.neuron.2014.12.018. Epub 2014 Dec 31.
9
Do gamma oscillations play a role in cerebral cortex?
Trends Cogn Sci. 2015 Feb;19(2):78-85. doi: 10.1016/j.tics.2014.12.002. Epub 2014 Dec 30.
10
Communication through coherence with inter-areal delays.
Curr Opin Neurobiol. 2015 Apr;31:173-80. doi: 10.1016/j.conb.2014.11.001. Epub 2014 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验