Blewitt Geoffrey, Kreemer Corné, Hammond William C, Gazeaux Julien
Nevada Bureau of Mines and Geology University of Nevada, Reno Reno Nevada USA.
IGN LAREG University of Paris Diderot, Sorbonne Paris Cité Paris France; Institut de Physique du Globe de Paris, PRES Sorbonne Paris Cité Paris France.
J Geophys Res Solid Earth. 2016 Mar;121(3):2054-2068. doi: 10.1002/2015JB012552. Epub 2016 Mar 4.
Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes = ( )/( ) computed between all data pairs > . For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.
为了应对可用数据呈指数级增长的情况,从GPS坐标时间序列中自动估计速度变得十分必要,但人眼可检测到的问题却常常被忽视。这促使我们寻找一种自动且准确的趋势估计器,它能抵抗诸如阶跃间断、异常值、季节性、偏度和异方差性等常见问题。本文开发的经偏度调整的年际中位数差异(MIDAS)是泰尔 - 森中位数趋势估计器的一种变体,其普通版本是在所有数据对(i > j)之间计算的斜率(s_{ij} = (y_i - y_j)/(t_i - t_j))的中位数。对于正态分布的数据,泰尔 - 森和最小二乘趋势估计在统计上是相同的,但与最小二乘不同,泰尔 - 森能抵抗未检测到的数据问题。为减轻季节性和阶跃间断的影响,MIDAS选择相隔1年的数据对。对于有间隙的时间序列,此条件会放宽,以便使用所有数据。跨越阶跃函数的数据对产生的斜率会产生单侧异常值,从而使中位数产生偏差。为减少偏差,MIDAS会去除异常值并重新计算中位数。MIDAS还会计算趋势不确定性的稳健且现实的估计值。使用北美刚性板块内部的GPS数据进行的统计测试表明,水平速度的均方根(RMS)精度为±0.23 mm/yr。在使用合成数据的盲测中,MIDAS速度的水平RMS精度为±0.33 mm/yr,垂直方向为±1.1 mm/yr,第5百分位数范围小于所测试的所有20种自动估计器。考虑到其通用性,MIDAS在地球科学领域有更广泛应用的潜力。