Zhang Shiguo, Ikoma Ai, Li Zhe, Ueno Kazuhide, Ma Xiaofeng, Dokko Kaoru, Watanabe Masayoshi
Department of Chemistry and Biotechnology, Yokohama National University , 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
ACS Appl Mater Interfaces. 2016 Oct 19;8(41):27803-27813. doi: 10.1021/acsami.6b09989. Epub 2016 Oct 4.
Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.
锂硫(Li-S)电池因其高理论容量和能量密度而成为一种很有前景的储能技术。然而,由于多硫化物在常见有机电解质中的溶解导致严重的穿梭效应,其实际应用仍然是一个挑战。多硫化物不溶性电解质,如溶剂化离子液体(ILs),最近已成为替代候选物,并在抑制穿梭效应和提高Li-S电池的循环稳定性方面显示出巨大潜力。多硫化物不溶性电解质中的氧化还原电化学反应通过电解质与复合阴极之间界面处的固态过程发生;因此,在硫和碳载体之间创建合适的界面非常重要。然而,为传统有机电解质建立的多孔碳载体可能不适用于多硫化物不溶性电解质。在这项工作中,我们以溶剂化离子液体作为模型电解质,研究了碳材料的多孔结构对多硫化物不溶性电解质中Li-S电池性能的影响。我们确定孔体积(而非表面积)对硫复合阴极的放电容量有主要影响。特别是,具有三维有序互连大孔且孔体积大的反蛋白石碳具有最高的放电容量。通过研究多硫化物可溶性电解质和溶剂化离子液体中的电池性能来考察电解质的影响。我们提出了一个合理的机制来解释多硫化物可溶性电解质和多硫化物不溶性电解质中不同的多孔结构要求。