Coulibaly Lassina Sandotin, Akpo Sylvain Kouakou, Yvon Jacques, Coulibaly Lacina
Université de Lorraine, CNRS, CREGU, GeoRessources Laboratory, 2 Rue du Doyen Marcel Roubault, B.P. 40, 54501 Vandoeuvre-Lès-Nancy Cedex, France; Université Nangui Abrogoua, Unité de recherche en Biotechnologie et Ingénierie de l'Environnement, Abidjan, 02 B.P. 802 Abidjan 02, Cote d'Ivoire.
Université Nangui Abrogoua, Unité de recherche en Biotechnologie et Ingénierie de l'Environnement, Abidjan, 02 B.P. 802 Abidjan 02, Cote d'Ivoire.
J Environ Manage. 2016 Dec 1;183(Pt 3):1032-1040. doi: 10.1016/j.jenvman.2016.09.061. Epub 2016 Sep 28.
Environmental pollution by phosphate in developing countries is growing with extensive and diffuse pollution. Solving these problem with intensive technologies is very expensive. Using natural sorbent such as laterite and sandstone could be a solution. The main objective of the study is to evaluate the P-removal efficiency of these materials under various solution properties. Laterite and sandstone used mainly contain very high levels of finely grained iron and aluminum oxy-hydroxides and diverse dioctahedral clays. Phosphate adsorption tests were carried out using crushed laterite and sandstone. Optimal doses and pH effects on phosphate adsorption were studied with a potassium hydrogeno-phosphate solution of 5 mg/L at 30 °C. The main results were that the optimal dosage is 15 and 20 mg/L respectively for laterite and sandstone. The phosphate adsorptions efficiency of laterite and sandstone are pH-dependent, they increase when the pH grows up to the Point of Zero Charge (PZC) and slowly decrease beyond. The adsorption capacities of the materials also increase proportionally with the initial phosphate concentration. The pseudo-second-order successfully described the kinetics of the phosphate adsorption on the two adsorbents. With this model, the adsorption capacity values are obtained, which give an idea of the maximum phosphate uptake that the laterite and sandstone could achieve. The changes on the FTIR spectra of raw materials and phosphate adsorbed material confirm the mechanism of chemisorptions. Considering the above, laterite and sandstone could be used as efficient and cheap adsorbent for the removal of phosphate in aqueous solution.
在发展中国家,磷造成的环境污染正随着广泛而分散的污染而加剧。采用密集型技术解决这些问题成本极高。使用诸如红土和砂岩等天然吸附剂可能是一种解决方案。本研究的主要目的是评估这些材料在各种溶液性质下对磷的去除效率。所使用的红土和砂岩主要含有非常高含量的细粒铁和铝的羟基氧化物以及多种二八面体粘土。使用粉碎后的红土和砂岩进行了磷酸盐吸附试验。在30℃下,用5mg/L的磷酸氢钾溶液研究了最佳剂量和pH值对磷酸盐吸附的影响。主要结果是,红土和砂岩的最佳剂量分别为15mg/L和20mg/L。红土和砂岩对磷酸盐的吸附效率取决于pH值,在pH值上升至零电荷点(PZC)时吸附效率增加,超过该点后则缓慢下降。材料的吸附容量也与初始磷酸盐浓度成正比增加。准二级动力学成功地描述了两种吸附剂对磷酸盐的吸附动力学。通过该模型获得了吸附容量值,这让人了解红土和砂岩能够实现的最大磷吸收量。原材料和吸附了磷酸盐的材料的傅里叶变换红外光谱(FTIR)的变化证实了化学吸附机制。综上所述,红土和砂岩可作为高效且廉价的吸附剂用于去除水溶液中的磷酸盐。