Pulivarthy Sandhya R, Lion Mattia, Kuzu Guray, Matthews Adam G W, Borowsky Mark L, Morris John, Kingston Robert E, Dennis Jonathan H, Tolstorukov Michael Y, Oettinger Marjorie A
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114; Department of Genetics, Harvard Medical School, Boston, MA 02115.
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6427-E6436. doi: 10.1073/pnas.1605543113. Epub 2016 Oct 3.
We show that the physical distribution of nucleosomes at antigen receptor loci is subject to regulated cell type-specific and lineage-specific positioning and correlates with the accessibility of these gene segments to recombination. At the Ig heavy chain locus (IgH), a nucleosome in pro-B cells is generally positioned over each IgH variable (VH) coding segment, directly adjacent to the recombination signal sequence (RSS), placing the RSS in a position accessible to the recombination activating gene (RAG) recombinase. These changes result in establishment of a specific chromatin organization at the RSS that facilitates accessibility of the genomic DNA for the RAG recombinase. In contrast, in mouse embryonic fibroblasts the coding segment is depleted of nucleosomes, which instead cover the RSS, thereby rendering it inaccessible. Pro-T cells exhibit a pattern intermediate between pro-B cells and mouse embryonic fibroblasts. We also find large-scale variations of nucleosome density over hundreds of kilobases, delineating chromosomal domains within IgH, in a cell type-dependent manner. These findings suggest that developmentally regulated changes in nucleosome location and occupancy, in addition to the known chromatin modifications, play a fundamental role in regulating V(D)J recombination. Nucleosome positioning-which has previously been observed to vary locally at individual enhancers and promoters-may be a more general mechanism by which cells can regulate the accessibility of the genome during development, at scales ranging from several hundred base pairs to many kilobases.
我们发现,抗原受体基因座上核小体的物理分布受到细胞类型特异性和谱系特异性定位的调控,并且与这些基因片段的重组可及性相关。在Ig重链基因座(IgH)处,前B细胞中的一个核小体通常定位在每个IgH可变区(VH)编码片段上,直接毗邻重组信号序列(RSS),从而使RSS处于重组激活基因(RAG)重组酶可及的位置。这些变化导致在RSS处建立特定的染色质组织,有利于基因组DNA对RAG重组酶的可及性。相反,在小鼠胚胎成纤维细胞中,编码片段缺乏核小体,而核小体覆盖了RSS,从而使其无法被接触到。前T细胞表现出介于前B细胞和小鼠胚胎成纤维细胞之间的模式。我们还发现,在数百千碱基范围内,核小体密度存在大规模变化,以细胞类型依赖的方式勾勒出IgH内的染色体结构域。这些发现表明,除了已知的染色质修饰外,核小体位置和占有率的发育调控变化在调节V(D)J重组中起基本作用。核小体定位——此前已观察到在单个增强子和启动子处局部变化——可能是一种更普遍的机制,通过该机制细胞在发育过程中可以在从几百个碱基对到许多千碱基的尺度上调节基因组的可及性。