Suppr超能文献

体外测量的RNA序列上下文效应可预测体内蛋白质结合和调控。

RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation.

作者信息

Taliaferro J Matthew, Lambert Nicole J, Sudmant Peter H, Dominguez Daniel, Merkin Jason J, Alexis Maria S, Bazile Cassandra, Burge Christopher B

机构信息

Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

出版信息

Mol Cell. 2016 Oct 20;64(2):294-306. doi: 10.1016/j.molcel.2016.08.035. Epub 2016 Oct 6.

Abstract

Many RNA binding proteins (RBPs) bind specific RNA sequence motifs, but only a small fraction (∼15%-40%) of RBP motif occurrences are occupied in vivo. To determine which contextual features discriminate between bound and unbound motifs, we performed an in vitro binding assay using 12,000 mouse RNA sequences with the RBPs MBNL1 and RBFOX2. Surprisingly, the strength of binding to motif occurrences in vitro was significantly correlated with in vivo binding, developmental regulation, and evolutionary age of alternative splicing. Multiple lines of evidence indicate that the primary context effect that affects binding in vitro and in vivo is RNA secondary structure. Large-scale combinatorial mutagenesis of unfavorable sequence contexts revealed a consistent pattern whereby mutations that increased motif accessibility improved protein binding and regulatory activity. Our results indicate widespread inhibition of motif binding by local RNA secondary structure and suggest that mutations that alter sequence context commonly affect RBP binding and regulation.

摘要

许多RNA结合蛋白(RBP)会结合特定的RNA序列基序,但在体内,只有一小部分(约15%-40%)的RBP基序出现情况会被占据。为了确定哪些上下文特征能够区分已结合和未结合的基序,我们使用含有RBP MBNL1和RBFOX2的12000个小鼠RNA序列进行了体外结合试验。令人惊讶的是,体外与基序出现情况的结合强度与体内结合、发育调控以及可变剪接的进化年龄显著相关。多条证据表明,影响体外和体内结合的主要上下文效应是RNA二级结构。对不利序列上下文进行大规模组合诱变揭示了一种一致的模式,即增加基序可及性的突变会改善蛋白质结合和调控活性。我们的结果表明局部RNA二级结构对基序结合有广泛的抑制作用,并表明改变序列上下文的突变通常会影响RBP结合和调控。

相似文献

1
RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation.
Mol Cell. 2016 Oct 20;64(2):294-306. doi: 10.1016/j.molcel.2016.08.035. Epub 2016 Oct 6.
2
RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
Methods Enzymol. 2015;558:465-493. doi: 10.1016/bs.mie.2015.02.007. Epub 2015 May 12.
3
A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
Methods. 2017 Apr 15;118-119:73-81. doi: 10.1016/j.ymeth.2017.03.003. Epub 2017 Mar 6.
4
Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
Nucleic Acids Res. 2013 Aug;41(14):6793-807. doi: 10.1093/nar/gkt421. Epub 2013 May 18.
5
Matrix-screening reveals a vast potential for direct protein-protein interactions among RNA binding proteins.
Nucleic Acids Res. 2021 Jul 9;49(12):6702-6721. doi: 10.1093/nar/gkab490.
6
SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.
Mol Cell. 2016 Oct 20;64(2):282-293. doi: 10.1016/j.molcel.2016.09.003. Epub 2016 Oct 6.
7
RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins.
Mol Cell. 2014 Jun 5;54(5):887-900. doi: 10.1016/j.molcel.2014.04.016. Epub 2014 May 15.
8
ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
Nucleic Acids Res. 2017 Nov 2;45(19):11004-11018. doi: 10.1093/nar/gkx756.
9
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
Methods. 2017 Apr 15;118-119:119-136. doi: 10.1016/j.ymeth.2017.03.015. Epub 2017 Mar 16.
10
RNA-protein interactions: an overview.
Methods Mol Biol. 2014;1097:491-521. doi: 10.1007/978-1-62703-709-9_23.

引用本文的文献

1
The quantitative impact of 3'UTRs on gene expression.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf568.
2
Liquid-liquid phase separation of membrane-less condensates: from biogenesis to function.
Front Cell Dev Biol. 2025 May 14;13:1600430. doi: 10.3389/fcell.2025.1600430. eCollection 2025.
3
Dissecting RNA selectivity mediated by tandem RNA-binding domains.
J Biol Chem. 2025 May;301(5):108435. doi: 10.1016/j.jbc.2025.108435. Epub 2025 Mar 20.
4
Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing.
Genome Res. 2025 Apr 14;35(4):712-724. doi: 10.1101/gr.279203.124.
5
RNA binding proteins (RBPs) on genetic stability and diseases.
Glob Med Genet. 2024 Nov 30;12(1):100032. doi: 10.1016/j.gmg.2024.100032. eCollection 2025 Mar.
6
A deep learning model for characterizing protein-RNA interactions from sequences at single-base resolution.
Patterns (N Y). 2025 Jan 10;6(1):101150. doi: 10.1016/j.patter.2024.101150.
7
Cellular translational enhancer elements that recruit eukaryotic initiation factor 3.
RNA. 2025 Jan 22;31(2):193-207. doi: 10.1261/rna.080310.124.
8
Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro.
Nat Commun. 2024 Sep 27;15(1):8400. doi: 10.1038/s41467-024-52231-7.
9
Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing.
bioRxiv. 2024 Aug 29:2024.08.29.610338. doi: 10.1101/2024.08.29.610338.
10
Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA.
Biophys J. 2024 Oct 1;123(19):3397-3407. doi: 10.1016/j.bpj.2024.08.004. Epub 2024 Aug 8.

本文引用的文献

1
Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR.
Cell. 2016 Apr 21;165(3):606-19. doi: 10.1016/j.cell.2016.03.040.
2
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
Nat Methods. 2016 Jun;13(6):508-14. doi: 10.1038/nmeth.3810. Epub 2016 Mar 28.
3
Modeling the combined effect of RNA-binding proteins and microRNAs in post-transcriptional regulation.
Nucleic Acids Res. 2016 May 19;44(9):e83. doi: 10.1093/nar/gkw048. Epub 2016 Feb 2.
4
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 2015 Aug 12;4:e05005. doi: 10.7554/eLife.05005.
5
Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.
Genome Res. 2015 Jun;25(6):858-71. doi: 10.1101/gr.184390.114. Epub 2015 Apr 16.
6
Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal.
Mol Biol Cell. 2015 May 15;26(10):1797-810. doi: 10.1091/mbc.E14-11-1500. Epub 2015 Mar 25.
7
Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.
Science. 2015 Feb 27;347(6225):1002-6. doi: 10.1126/science.1261417. Epub 2015 Jan 1.
8
Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus.
Mol Cell. 2015 Jan 22;57(2):376-88. doi: 10.1016/j.molcel.2014.12.004. Epub 2014 Dec 31.
9
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.
Science. 2015 Jan 9;347(6218):1254806. doi: 10.1126/science.1254806. Epub 2014 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验