Suppr超能文献

线粒体核糖体的分离

Isolation of Mitochondrial Ribosomes.

作者信息

Carroll Adam J

机构信息

The ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, 134 Linnaeus Way, Acton, Canberra, ACT, 2601, Australia.

出版信息

Methods Mol Biol. 2017;1511:267-280. doi: 10.1007/978-1-4939-6533-5_21.

Abstract

Translation of mitochondrial encoded mRNAs by mitochondrial ribosomes is thought to play a major role in regulating the expression of mitochondrial proteins. However, the structure and function of plant mitochondrial ribosomes remains poorly understood. To study mitochondrial ribosomes, it is necessary to separate them from plastidic and cytosolic ribosomes that are generally present at much higher concentrations. Here, a straight forward protocol for the preparation of fractions highly enriched in mitochondrial ribosomes from plant cells is described. The method begins with purification of mitochondria followed by mitochondrial lysis and ultracentrifugation of released ribosomes through sucrose cushions and gradients. Dark-grown Arabidopsis cells were used in this example because of the ease with which good yields of pure mitochondria can be obtained from them. However, the steps for isolation of ribosomes from mitochondria could be applied to mitochondria obtained from other sources. Proteomic analyses of resulting fractions have confirmed strong enrichment of mitochondrial ribosomal proteins.

摘要

线粒体核糖体对线粒体编码的mRNA进行翻译被认为在调节线粒体蛋白的表达中起主要作用。然而,人们对植物线粒体核糖体的结构和功能仍知之甚少。为了研究线粒体核糖体,有必要将它们与通常浓度高得多的质体核糖体和胞质核糖体分离。本文描述了一种从植物细胞中制备高度富集线粒体核糖体的组分的直接方法。该方法首先纯化线粒体,然后裂解线粒体,并通过蔗糖垫层和梯度对释放的核糖体进行超速离心。本示例中使用了黑暗生长的拟南芥细胞,因为从它们中可以很容易地获得高产率的纯线粒体。然而,从线粒体中分离核糖体的步骤可应用于从其他来源获得的线粒体。对所得组分的蛋白质组学分析证实了线粒体核糖体蛋白的高度富集。

相似文献

1
Isolation of Mitochondrial Ribosomes.
Methods Mol Biol. 2017;1511:267-280. doi: 10.1007/978-1-4939-6533-5_21.
2
Isolation of Cytosolic Ribosomes.
Methods Mol Biol. 2017;1511:241-247. doi: 10.1007/978-1-4939-6533-5_19.
3
Isolation of Plastid Ribosomes.
Methods Mol Biol. 2017;1511:249-266. doi: 10.1007/978-1-4939-6533-5_20.
4
Isolation of Arabidopsis Leaf Peroxisomes and the Peroxisomal Membrane.
Methods Mol Biol. 2017;1511:97-112. doi: 10.1007/978-1-4939-6533-5_8.
5
Isolation of Mitochondria, Their Sub-Organellar Compartments, and Membranes.
Methods Mol Biol. 2017;1511:83-96. doi: 10.1007/978-1-4939-6533-5_7.
6
Isolation of Endoplasmic Reticulum and Its Membrane.
Methods Mol Biol. 2017;1511:119-129. doi: 10.1007/978-1-4939-6533-5_10.
7
Isolation and Suborganellar Fractionation of Arabidopsis Chloroplasts.
Methods Mol Biol. 2017;1511:45-60. doi: 10.1007/978-1-4939-6533-5_4.
8
Isolation of Microtubules and Microtubule-Associated Proteins.
Methods Mol Biol. 2017;1511:281-289. doi: 10.1007/978-1-4939-6533-5_22.
9
Isolation of Vacuoles and the Tonoplast.
Methods Mol Biol. 2017;1511:113-118. doi: 10.1007/978-1-4939-6533-5_9.

引用本文的文献

1
Maize Encodes Mitochondrial Ribosomal Protein L9 and Is Required for Seed Development.
Plant Physiol. 2019 Aug;180(4):2106-2119. doi: 10.1104/pp.19.00546. Epub 2019 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验