Suppr超能文献

基于 CFS+KNN 算法的 EEG 情感学习研究中的注意识别。

Attention Recognition in EEG-Based Affective Learning Research Using CFS+KNN Algorithm.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Jan-Feb;15(1):38-45. doi: 10.1109/TCBB.2016.2616395. Epub 2016 Oct 11.

Abstract

The research detailed in this paper focuses on the processing of Electroencephalography (EEG) data to identify attention during the learning process. The identification of affect using our procedures is integrated into a simulated distance learning system that provides feedback to the user with respect to attention and concentration. The authors propose a classification procedure that combines correlation-based feature selection (CFS) and a k-nearest-neighbor (KNN) data mining algorithm. To evaluate the CFS+KNN algorithm, it was test against CFS+C4.5 algorithm and other classification algorithms. The classification performance was measured 10 times with different 3-fold cross validation data. The data was derived from 10 subjects while they were attempting to learn material in a simulated distance learning environment. A self-assessment model of self-report was used with a single valence to evaluate attention on 3 levels (high, neutral, low). It was found that CFS+KNN had a much better performance, giving the highest correct classification rate (CCR) of % for the valence dimension divided into three classes.

摘要

本文详细研究了脑电图(EEG)数据的处理方法,以识别学习过程中的注意力。我们的程序通过使用识别情感,并将其集成到一个模拟远程学习系统中,为用户提供有关注意力和集中力的反馈。作者提出了一种分类程序,该程序结合了基于相关性的特征选择(CFS)和 K 最近邻(KNN)数据挖掘算法。为了评估 CFS+KNN 算法,它与 CFS+C4.5 算法和其他分类算法进行了比较。使用不同的 3 折交叉验证数据对分类性能进行了 10 次测量。数据来自 10 位受试者,他们在模拟远程学习环境中尝试学习材料。使用单效价的自我报告自我评估模型在 3 个级别(高、中、低)上评估注意力。结果发现,CFS+KNN 的性能要好得多,对于分为三个类别的效价维度,给出了最高的正确分类率(CCR)%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验