Suppr超能文献

本福德定律在复杂网络中的应用。

Benford's Distribution in Complex Networks.

机构信息

Institute of Computing Science, Poznań University of Technology, Poznań, 60-965, Poland.

Faculty of Computer Science &Management, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.

出版信息

Sci Rep. 2016 Oct 17;6:34917. doi: 10.1038/srep34917.

Abstract

Many collections of numbers do not have a uniform distribution of the leading digit, but conform to a very particular pattern known as Benford's distribution. This distribution has been found in numerous areas such as accounting data, voting registers, census data, and even in natural phenomena. Recently it has been reported that Benford's law applies to online social networks. Here we introduce a set of rigorous tests for adherence to Benford's law and apply it to verification of this claim, extending the scope of the experiment to various complex networks and to artificial networks created by several popular generative models. Our findings are that neither for real nor for artificial networks there is sufficient evidence for common conformity of network structural properties with Benford's distribution. We find very weak evidence suggesting that three measures, degree centrality, betweenness centrality and local clustering coefficient, could adhere to Benford's law for scalefree networks but only for very narrow range of their parameters.

摘要

许多数字集合的首位数字分布并不均匀,而是符合一种被称为本福德定律的特殊模式。这种分布在许多领域都有发现,如会计数据、投票登记簿、人口普查数据,甚至在自然现象中。最近有报道称,本福德定律适用于在线社交网络。在这里,我们引入了一组严格的测试来验证是否符合本福德定律,并将其应用于验证这一说法,将实验范围扩展到各种复杂网络和由几个流行的生成模型创建的人工网络。我们的研究结果表明,无论是真实网络还是人工网络,都没有足够的证据表明网络结构特性与本福德分布具有共同的一致性。我们发现了非常微弱的证据表明,对于无标度网络,三个度量标准,即度数中心度、介数中心度和局部聚类系数,可能符合本福德定律,但仅在其参数非常狭窄的范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验