Suppr超能文献

离子液体中具有分级孔结构的碳骨架实现高倍率性能的增强型超级电容能量

Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid.

作者信息

Wang Xuehang, Zhou Haitao, Lou Fengliu, Li Yahao, Buan Marthe E M, Duan Xuezhi, Walmsley John C, Sheridan Edel, Chen De

机构信息

Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Saelands vei 4, 7491, Trondheim, Norway.

SINTEF Materials and Chemistry, Strindveien 4, 7034, Trondheim, Norway.

出版信息

ChemSusChem. 2016 Nov 9;9(21):3093-3101. doi: 10.1002/cssc.201600779. Epub 2016 Oct 18.

Abstract

The specific energy of a supercapacitor (SC) with an ionic liquid (IL)-based electrolyte is larger than that using an aqueous electrolyte owing to the wide operating voltage window provided by the IL. However, the wide-scale application of high-energy SCs using ILs is limited owing to a serious reduction of the energy with increasing power. The introduction of macropores to the porous material can mitigate the reduction in the gravimetric capacitance at high rates, but this lowers the volumetric capacitance. Synthetic polymers can be used to obtain macroporous frameworks with high apparent densities, but the preservation of the frameworks during activation is challenging. To simultaneously achieve high gravimetric capacitance, volumetric capacitance, and rate capability, a systematic strategy was used to synthesize a densely knitted carbon framework with a hierarchical pore structure by using a polymer. The energy of the SC using the hierarchically porous carbon was 160 Wh kg and 85 Wh L on an active material base at a power of 100 W kg in an IL electrolyte, and 60 % of the energy was still retained at a power larger than 5000 W kg . To illustrate, a full-packaged SC with the material could store/release energy comparable to a Ni-metal hydride battery (gravimetrically) and one order of magnitude higher than a commercial carbon-based SC (volumetrically), within one minute.

摘要

由于离子液体(IL)提供了较宽的工作电压窗口,基于离子液体电解质的超级电容器(SC)的比能量大于使用水性电解质的超级电容器。然而,由于随着功率增加能量严重降低,使用离子液体的高能量超级电容器的大规模应用受到限制。在多孔材料中引入大孔可以减轻高倍率下比电容的降低,但这会降低体积电容。合成聚合物可用于获得具有高表观密度的大孔框架,但在活化过程中保持框架具有挑战性。为了同时实现高比电容、体积电容和倍率性能,采用了一种系统策略,通过使用聚合物合成具有分级孔结构的致密编织碳框架。在离子液体电解质中,基于活性材料,使用分级多孔碳的超级电容器在功率为100 W/kg时的能量为160 Wh/kg和85 Wh/L,在功率大于5000 W/kg时仍保留60%的能量。举例来说,使用这种材料的全封装超级电容器在一分钟内可以存储/释放与镍氢电池相当的能量(按重量计),并且比商用碳基超级电容器高一个数量级(按体积计)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验