Suppr超能文献

通过稻壳的铝热还原合成的介孔 SiO@C 复合材料及其作为锂离子电池阳极的应用。

Microsized Porous SiO@C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries.

机构信息

Institute of Materials and Technology, Dalian Maritime University , Dalian 116026, P. R. China.

School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore.

出版信息

ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30239-30247. doi: 10.1021/acsami.6b10260. Epub 2016 Oct 27.

Abstract

Microsized porous SiO@C composites used as anode for lithium-ion batteries (LIBs) are synthesized from rice husks (RHs) through low-temperature (700 °C) aluminothermic reduction. The resulting SiO@C composite shows mesoporous irregular particle morphology with a high specific surface area of 597.06 m/g under the optimized reduction time. This porous SiO@C composite is constructed by SiO nanoparticles uniformly dispersed in the C matrix. When tested as anode material for LIBs, it displays considerable specific capacity (1230 mAh/g at a current density of 0.1 A/g) and excellent cyclic stability with capacity fading of less than 0.5% after 200 cycles at 0.8 A/g. The dramatic volume change for the Si anode during lithium-ion (Li) insertion and extraction can be successfully buffered because of the formation of LiO and LiSiO during initial lithiation process and carbon coating layer on the surface of SiO. The porous structure could also mitigate the volume change and mechanical strains and shorten the Li diffusion path length. These characteristics improve the cyclic stability of the electrode. This low-cost and environment-friendly SiO@C composite anode material exhibits great potential as an alternative for traditional graphite anodes.

摘要

采用稻壳为原料,通过低温(700°C)铝热还原法合成了用于锂离子电池(LIBs)的微孔多孔 SiO@C 复合材料。在优化的还原时间下,所得的 SiO@C 复合材料呈现出具有中孔不规则颗粒形态和 597.06 m²/g 的高比表面积。这种多孔 SiO@C 复合材料由均匀分散在 C 基体中的 SiO 纳米颗粒构建而成。当用作 LIBs 的阳极材料进行测试时,它显示出相当高的比容量(在 0.1 A/g 的电流密度下为 1230 mAh/g)和优异的循环稳定性,在 0.8 A/g 下经过 200 次循环后,容量衰减小于 0.5%。由于在初始锂化过程中形成了 LiO 和 LiSiO,以及在 SiO 表面形成了碳涂层,因此可以成功缓冲 Si 阳极在锂离子(Li)插入和提取过程中的剧烈体积变化。多孔结构还可以减轻体积变化和机械应变,并缩短 Li 扩散路径长度。这些特性提高了电极的循环稳定性。这种低成本、环保的 SiO@C 复合阳极材料作为传统石墨阳极的替代品具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验