Santucci Pierre, Bouzid Feriel, Smichi Nabil, Poncin Isabelle, Kremer Laurent, De Chastellier Chantal, Drancourt Michel, Canaan Stéphane
Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France.
Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITEMarseille, France.
Front Cell Infect Microbiol. 2016 Oct 7;6:122. doi: 10.3389/fcimb.2016.00122. eCollection 2016.
Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with , the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the and models which allowed to gain significant insight into lipid accumulation and consumption in , two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB.
尽管自2014年以来略有下降,但结核病仍然是全球主要的致命传染病,每年约有150万人死亡,约三分之一的人口潜伏感染结核分枝杆菌,即结核病的病原体。在初次感染期间,免疫细胞的募集导致形成高度有组织的肉芽肿。在不同的细胞中,一个突出的亚群是泡沫巨噬细胞(FM),其特征是富含三酰甘油的脂质体(LB)丰富。结核分枝杆菌可以存在于FM中,在那里它从宿主LB中获取中性脂质,随后这些脂质被杆菌以胞内脂质包涵体(ILI)的形式加工和储存。尽管宿主LB在潜伏期间可被视为病原体的营养储存库,但吞噬体内的分枝杆菌与LB相互作用并同化LB衍生脂质的分子机制才刚刚开始被理解。过去的研究强调,这些生理过程对于结核分枝杆菌的感染生命周期、感染的传播、休眠状态的建立和疾病的重新激活至关重要。近年来,已经开发了几种动物和细胞模型,旨在剖析这些复杂过程,并确定其关键参与者的性质和贡献。在此,我们回顾了一些动物和细胞模型,这些模型使我们能够深入了解结核分枝杆菌中的脂质积累和消耗,这两个重要事件与致病性、肉芽肿形成/维持以及结核杆菌在非复制条件下的存活直接相关。我们还讨论了每个模型的优点和局限性,希望这将为未来致力于结核杆菌持续存在和创新治疗方法的研究提供指导。