Suppr超能文献

三种可分离协方差矩阵结构的似然比检验与拉奥得分检验的比较。

A comparison of likelihood ratio tests and Rao's score test for three separable covariance matrix structures.

作者信息

Filipiak Katarzyna, Klein Daniel, Roy Anuradha

机构信息

Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965, Poznań, Poland.

Institute of Mathematics, Faculty of Science, P. J. Šafárik University, 040 01, Košice, Slovakia.

出版信息

Biom J. 2017 Jan;59(1):192-215. doi: 10.1002/bimj.201600044. Epub 2016 Oct 24.

Abstract

The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ distribution. The tests are implemented on a real dataset from medical studies.

摘要

在多变量重复测量数据的背景下,使用Rao得分检验(RST)研究了针对非结构化方差 - 协方差矩阵检验协方差矩阵可分离性的问题。在多变量正态性假设下,RST统计量是根据可分离结构的第一个分量作为一阶自回归(AR(1))相关矩阵或非结构化(UN)协方差矩阵来构建的。结果表明,在任何可分离性的原假设下,RST统计量的分布不依赖于均值的真实值或可分离结构的非结构化分量。RST的一个显著优点是它可以用于小样本,甚至样本量小于数据维度的情况,而似然比检验(LRT)在此种情况下无法使用,并且在许多情况下它优于标准LRT。然后使用蒙特卡罗模拟来研究RST统计量的原假设分布以及LRT统计量的原假设分布在样本量考量方面的比较行为,以及用于估计经验百分位数。我们的研究结果与可分离结构的第一个分量为复合对称(CS)相关矩阵时的现有结果进行了比较。模拟还表明,RST统计量的经验原假设分布比LRT统计量的经验原假设分布更快地收敛到极限χ分布。这些检验应用于医学研究的一个真实数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验