Suppr超能文献

微孢子虫的细胞间传播导致秀丽隐杆线虫的器官形成合胞体。

Cell-to-cell spread of microsporidia causes Caenorhabditis elegans organs to form syncytia.

机构信息

Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.

出版信息

Nat Microbiol. 2016 Aug 22;1(11):16144. doi: 10.1038/nmicrobiol.2016.144.

Abstract

The growth of pathogens is dictated by their interactions with the host environment. Obligate intracellular pathogens undergo several cellular decisions as they progress through their life cycles inside host cells. We have studied this process for microsporidian species in the genus Nematocida as they grew and developed inside their co-evolved animal host, Caenorhabditis elegans. We found that microsporidia can restructure multicellular host tissues into a single contiguous multinucleate cell. In particular, we found that all three Nematocida species we studied were able to spread across the cells of C. elegans tissues before forming spores, with two species causing syncytial formation in the intestine and one species causing syncytial formation in the muscle. We also found that the decision to switch from replication to differentiation in Nematocida parisii was altered by the density of infection, suggesting that environmental cues influence the dynamics of the pathogen life cycle. These findings show how microsporidia can maximize the use of host space for growth and that environmental cues in the host can regulate a developmental switch in the pathogen.

摘要

病原体的生长受其与宿主环境相互作用的支配。专性细胞内病原体在宿主细胞内完成生命周期的过程中,会经历几个细胞决策。我们研究了在共生动物秀丽隐杆线虫体内生长和发育的 Nemotocida 属中的微孢子虫物种的这一过程。我们发现微孢子虫可以将多细胞宿主组织重构为单个连续多核细胞。具体来说,我们发现我们研究的三种 Nemotocida 物种都能够在形成孢子之前在秀丽隐杆线虫组织的细胞间传播,其中两种物种导致肠道合胞形成,一种物种导致肌肉合胞形成。我们还发现,Nemotocida parisii 从复制到分化的转变决定因素是感染密度,这表明环境线索会影响病原体生命周期的动态。这些发现表明了微孢子虫如何最大限度地利用宿主空间进行生长,以及宿主中的环境线索如何调节病原体的发育转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca88/5094362/92ebb7de6a7f/nihms803845f1.jpg

相似文献

1
Cell-to-cell spread of microsporidia causes Caenorhabditis elegans organs to form syncytia.
Nat Microbiol. 2016 Aug 22;1(11):16144. doi: 10.1038/nmicrobiol.2016.144.
2
Host-Microsporidia Interactions in Caenorhabditis elegans, a Model Nematode Host.
Microbiol Spectr. 2016 Oct;4(5). doi: 10.1128/microbiolspec.FUNK-0003-2016.
3
5
Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.
PLoS Biol. 2008 Dec 9;6(12):2736-52. doi: 10.1371/journal.pbio.0060309.
6
An intestinally secreted host factor promotes microsporidia invasion of .
Elife. 2022 Jan 7;11:e72458. doi: 10.7554/eLife.72458.
7
Insights from C. elegans into Microsporidia Biology and Host-Pathogen Relationships.
Exp Suppl. 2022;114:115-136. doi: 10.1007/978-3-030-93306-7_5.
8
Microsporidian infection in a free-living marine nematode.
Eukaryot Cell. 2012 Dec;11(12):1544-51. doi: 10.1128/EC.00228-12. Epub 2012 Oct 19.
10
Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth.
Genome Res. 2012 Dec;22(12):2478-88. doi: 10.1101/gr.142802.112. Epub 2012 Jul 18.

引用本文的文献

2
Microsporidia infection alters C. elegans lipid levels.
PLoS One. 2025 Jul 1;20(7):e0327188. doi: 10.1371/journal.pone.0327188. eCollection 2025.
3
Small-molecule screen in C. elegans identifies benzenesulfonamides as inhibitors of microsporidia spores.
NPJ Antimicrob Resist. 2025 May 21;3(1):41. doi: 10.1038/s44259-025-00116-0.
4
Patterns of pathogenesis in innate immunity: insights from C. elegans.
Nat Rev Immunol. 2025 Apr 17. doi: 10.1038/s41577-025-01167-0.
5
Screening of the Pandemic Response Box identifies anti-microsporidia compounds.
PLoS Negl Trop Dis. 2023 Dec 8;17(12):e0011806. doi: 10.1371/journal.pntd.0011806. eCollection 2023 Dec.
7
Conservation of Nematocida microsporidia gene expression and host response in Caenorhabditis nematodes.
PLoS One. 2022 Dec 19;17(12):e0279103. doi: 10.1371/journal.pone.0279103. eCollection 2022.

本文引用的文献

1
Discovery of a Natural Microsporidian Pathogen with a Broad Tissue Tropism in Caenorhabditis elegans.
PLoS Pathog. 2016 Jun 30;12(6):e1005724. doi: 10.1371/journal.ppat.1005724. eCollection 2016 Jun.
2
Metabolic crosstalk between host and pathogen: sensing, adapting and competing.
Nat Rev Microbiol. 2016 Apr;14(4):221-34. doi: 10.1038/nrmicro.2016.12. Epub 2016 Mar 7.
3
Microsporidia - Emergent Pathogens in the Global Food Chain.
Trends Parasitol. 2016 Apr;32(4):336-348. doi: 10.1016/j.pt.2015.12.004. Epub 2016 Jan 19.
4
Systems analysis of host-parasite interactions.
Wiley Interdiscip Rev Syst Biol Med. 2015 Nov-Dec;7(6):381-400. doi: 10.1002/wsbm.1311. Epub 2015 Aug 26.
5
Seven challenges in modeling pathogen dynamics within-host and across scales.
Epidemics. 2015 Mar;10:45-8. doi: 10.1016/j.epidem.2014.09.009. Epub 2014 Sep 30.
6
Reovirus FAST proteins: virus-encoded cellular fusogens.
Trends Microbiol. 2014 Dec;22(12):715-24. doi: 10.1016/j.tim.2014.08.005. Epub 2014 Sep 19.
7
Ubiquitin-mediated response to microsporidia and virus infection in C. elegans.
PLoS Pathog. 2014 Jun 19;10(6):e1004200. doi: 10.1371/journal.ppat.1004200. eCollection 2014 Jun.
8
The small GTPase RAB-11 directs polarized exocytosis of the intracellular pathogen N. parisii for fecal-oral transmission from C. elegans.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8215-20. doi: 10.1073/pnas.1400696111. Epub 2014 May 19.
10
Arp2/3-mediated actin-based motility: a tail of pathogen abuse.
Cell Host Microbe. 2013 Sep 11;14(3):242-55. doi: 10.1016/j.chom.2013.08.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验