Patra Ranjan, Maldivi Pascale
Laboratoire Chimie et Biologie des Métaux /Physicochimie des Métaux en Biologie (LCBM/PMB), Univ. Grenoble Alpes, 38000, Grenoble, France.
Laboratoire Chimie et Biologie des Métaux /Physicochimie des Métaux en Biologie (LCBM/PMB), CNRS, UMR 5249, 38000, Grenoble, France.
J Mol Model. 2016 Nov;22(11):278. doi: 10.1007/s00894-016-3142-6. Epub 2016 Oct 27.
Nitrene transfer reactions to various hydrocarbon molecules can be efficiently catalyzed by Fe complexes through a mechanism reminiscent of the oxygen transfer function of oxygenase enzymes. Such enzymes exhibit a high-valent iron oxo Fe(IV) = O as the active species, and it has also been proposed that an analogous species, i.e., Fe(IV) = NR (NR being the nitrene group) is responsible for the nitrene transfer activity. We describe here the influence of the Fe(IV) coordination sphere on some key parameters for nitrene transfer efficacy, such as the spin state of the Fe(IV) cation, the electronic affinity, and the bond dissociation energy of the NHR moiety. We explore here the electronic properties of Fe(IV) = NTs (NTs = tolylsulfonylimido group) mononuclear complexes with ligands involving phenolate and nitrogen donor groups, as catalytic properties with such ligands have been found to be quite promising. Six tetradentate ligands were studied, which derive from three different scaffolds: 2-methylenepyridine-N,N-bis(2-methylene-4,6-dichlorophenol) and 2-methylenepyridine-N,N-bis(2-methylene-4,6-dimethylphenol), N,N-dimethyl-N',N'-bis(2-methylene-4,6-dichlorophenol) ethylenediamine, and N,N-dimethyl-N',N'- bis(2-methylene-4,6-dimethylphenol) ethylenediamine, N,N'-bis(2-methylene-4,6-dichlorophenol)-N,N'-dimethyl-1,2-diaminoethane and N,N'-bis(2-methylene-4,6-dimethylphenol)-N,N'-dimethyl-1,2-diaminoethane. Thanks to thorough DFT computations, we present some rationalization of the electronic properties of the resulting Fe(IV) = NTs complexes in relation to their coordination sphere and compare them to other Fe(IV) nitrene active species. We show in particular the important role of the anionic character and strong π-donation of the phenolate groups.
铁配合物可以通过一种类似于加氧酶氧转移功能的机制,有效地催化氮烯向各种烃分子的转移反应。这类酶以高价铁氧代物Fe(IV)=O作为活性物种,也有人提出类似的物种,即Fe(IV)=NR(NR为氮烯基团)是氮烯转移活性的原因。我们在此描述Fe(IV)配位环境对氮烯转移效率的一些关键参数的影响,如Fe(IV)阳离子的自旋态、电子亲和性以及NHR部分的键解离能。我们在此探索含有酚盐和氮供体基团配体的Fe(IV)=NTs(NTs=甲苯磺酰亚氨基基团)单核配合物的电子性质,因为已发现此类配体的催化性质很有前景。研究了六种四齿配体,它们源自三种不同的骨架:2-亚甲基吡啶-N,N-双(2-亚甲基-4,6-二氯苯酚)和2-亚甲基吡啶-N,N-双(2-亚甲基-4,6-二甲基苯酚)、N,N-二甲基-N',N'-双(2-亚甲基-4,6-二氯苯酚)乙二胺和N,N-二甲基-N',N'-双(2-亚甲基-4,6-二甲基苯酚)乙二胺、N,N'-双(2-亚甲基-4,6-二氯苯酚)-N,N'-二甲基-1,2-二氨基乙烷和N,N'-双(2-亚甲基-4,6-二甲基苯酚)-N,N'-二甲基-1,2-二氨基乙烷。通过全面的密度泛函理论计算,我们对所得Fe(IV)=NTs配合物的电子性质与其配位环境的关系进行了一些合理化分析,并将它们与其他Fe(IV)氮烯活性物种进行了比较。我们特别展示了酚盐基团的阴离子特性和强π供体作用的重要作用。