Suppr超能文献

动态脑网络重构作为一种潜在的精神分裂症遗传风险机制,受N-甲基-D-天冬氨酸受体功能调节。

Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.

作者信息

Braun Urs, Schäfer Axel, Bassett Danielle S, Rausch Franziska, Schweiger Janina I, Bilek Edda, Erk Susanne, Romanczuk-Seiferth Nina, Grimm Oliver, Geiger Lena S, Haddad Leila, Otto Kristina, Mohnke Sebastian, Heinz Andreas, Zink Mathias, Walter Henrik, Schwarz Emanuel, Meyer-Lindenberg Andreas, Tost Heike

机构信息

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany;

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

出版信息

Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12568-12573. doi: 10.1073/pnas.1608819113. Epub 2016 Oct 17.

Abstract

Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation-inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified "network flexibility," a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia.

摘要

精神分裂症越来越被认为是一种分布式神经动力学障碍,但其分子和遗传方面的作用却知之甚少。最近的研究强调了N-甲基-D-天冬氨酸(NMDA)受体信号改变以及相关的大规模神经网络兴奋-抑制平衡和同步性受损所起的作用。在这里,我们将药物干预与动态网络神经科学的新技术相结合,应用于功能磁共振成像(fMRI),以确定与精神分裂症遗传风险和NMDA受体功能低下相关的脑网络动态重构变化。我们量化了“网络灵活性”,这是一种在工作记忆表现期间时变脑网络社区结构动态重构的度量。比较28例精神分裂症患者、37名未受影响的一级亲属和139名健康对照,我们发现网络灵活性存在显著差异[F(2,196) = 6.541,P = 0.002],其模式与各组假定的遗传风险负荷一致(患者最高,亲属居中,对照最低)。在一项针对37名健康对照的观察者盲法、安慰剂对照、随机、交叉药物激发研究中,我们进一步发现,使用120毫克右美沙芬进行NMDA受体拮抗后,网络灵活性显著增加[F(1,34) = 5.291,P = 0.028]。我们的结果确定了一种与精神分裂症遗传易感性相关的潜在动态网络中间表型,其表现为工作记忆期间脑网络重构改变。该表型似乎受NMDA受体拮抗作用的影响,这与谷氨酸在神经网络的时间协调和精神分裂症病理生理学中的关键作用一致。

相似文献

1
Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12568-12573. doi: 10.1073/pnas.1608819113. Epub 2016 Oct 17.
2
Dynamic reconfiguration of frontal brain networks during executive cognition in humans.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11678-83. doi: 10.1073/pnas.1422487112. Epub 2015 Aug 31.
4
Working memory networks and activation patterns in schizophrenia and bipolar disorder: comparison with healthy controls.
Br J Psychiatry. 2014;204:290-8. doi: 10.1192/bjp.bp.113.129254. Epub 2014 Jan 16.
6
7
Functional connectivity of large-scale brain networks in patients with anti-NMDA receptor encephalitis: an observational study.
Lancet Psychiatry. 2017 Oct;4(10):768-774. doi: 10.1016/S2215-0366(17)30330-9. Epub 2017 Sep 4.
8
Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment.
Transl Psychiatry. 2018 Jan 10;8(1):3. doi: 10.1038/s41398-017-0060-z.
9
Functional connectivity measures as schizophrenia intermediate phenotypes: advances, limitations, and future directions.
Curr Opin Neurobiol. 2016 Feb;36:7-14. doi: 10.1016/j.conb.2015.07.008. Epub 2015 Aug 11.

引用本文的文献

2
Computational modelling reveals neurobiological contributions to static and dynamic functional connectivity patterns.
Front Comput Neurosci. 2025 Jul 29;19:1525785. doi: 10.3389/fncom.2025.1525785. eCollection 2025.
3
5
Trait absorption is not reliably associated with brain structure or resting-state functional connectivity.
Neuroimage Rep. 2023 Apr 8;3(2):100171. doi: 10.1016/j.ynirp.2023.100171. eCollection 2023 Jun.
7
Macro- and Microstructural Alterations in the Midbrain in Early Psychosis Associates with Clinical Symptom Scores.
eNeuro. 2025 Mar 19;12(3). doi: 10.1523/ENEURO.0361-24.2025. Print 2025 Mar.
9
Reduced temporal variability of cortical excitation/inhibition ratio in schizophrenia.
Schizophrenia (Heidelb). 2025 Feb 18;11(1):20. doi: 10.1038/s41537-025-00568-3.
10
On the varieties of conscious experiences: Altered Beliefs Under Psychedelics (ALBUS).
Neurosci Conscious. 2025 Feb 13;2025(1):niae038. doi: 10.1093/nc/niae038. eCollection 2025.

本文引用的文献

1
Functional hierarchy underlies preferential connectivity disturbances in schizophrenia.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E219-28. doi: 10.1073/pnas.1508436113. Epub 2015 Dec 23.
2
Dynamic reconfiguration of frontal brain networks during executive cognition in humans.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11678-83. doi: 10.1073/pnas.1422487112. Epub 2015 Aug 31.
3
Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia.
Biol Psychiatry. 2016 May 1;79(9):716-726. doi: 10.1016/j.biopsych.2015.07.005. Epub 2015 Jul 17.
4
Learning-induced autonomy of sensorimotor systems.
Nat Neurosci. 2015 May;18(5):744-51. doi: 10.1038/nn.3993. Epub 2015 Apr 6.
5
The connectomics of brain disorders.
Nat Rev Neurosci. 2015 Mar;16(3):159-72. doi: 10.1038/nrn3901.
6
Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition.
Neuron. 2014 Dec 3;84(5):997-1008. doi: 10.1016/j.neuron.2014.10.032. Epub 2014 Nov 13.
7
On spurious and real fluctuations of dynamic functional connectivity during rest.
Neuroimage. 2015 Jan 1;104:430-6. doi: 10.1016/j.neuroimage.2014.09.007. Epub 2014 Sep 16.
8
Intrinsic and task-evoked network architectures of the human brain.
Neuron. 2014 Jul 2;83(1):238-51. doi: 10.1016/j.neuron.2014.05.014.
9
Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
Neuroimage. 2014 Jan 1;84:888-900. doi: 10.1016/j.neuroimage.2013.09.013. Epub 2013 Sep 18.
10
Mechanism of action of dextromethorphan/quinidine:comparison with ketamine.
CNS Spectr. 2013 Oct;18(5):225-7. doi: 10.1017/S109285291300062X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验