Suppr超能文献

睡眠效率的新预测指标。

New predictors of sleep efficiency.

作者信息

Jung Da Woon, Lee Yu Jin, Jeong Do-Un, Park Kwang Suk

机构信息

a Interdisciplinary Program for Biomedical Engineering , Seoul National University Graduate School , Seoul , Republic of Korea.

b Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine and Center for Sleep and Chronobiology , Seoul National University Hospital , Seoul , Republic of Korea.

出版信息

Chronobiol Int. 2017;34(1):93-104. doi: 10.1080/07420528.2016.1241802. Epub 2016 Oct 28.

Abstract

Sleep efficiency is a commonly and widely used measure to objectively evaluate sleep quality. Monitoring sleep efficiency can provide significant information about health conditions. As an attempt to facilitate less cumbersome monitoring of sleep efficiency, our study aimed to suggest new predictors of sleep efficiency that enable reliable and unconstrained estimation of sleep efficiency during awake resting period. We hypothesized that the autonomic nervous system activity observed before falling asleep might be associated with sleep efficiency. To assess autonomic activity, heart rate variability and breathing parameters were analyzed for 5 min. Using the extracted parameters as explanatory variables, stepwise multiple linear regression analyses and k-fold cross-validation tests were performed with 240 electrocardiographic and thoracic volume change signal recordings to develop the sleep efficiency prediction model. The developed model's sleep efficiency predictability was evaluated using 60 piezoelectric sensor signal recordings. The regression model, established using the ratio of the power of the low- and high-frequency bands of the heart rate variability signal and the average peak inspiratory flow value, provided an absolute error (mean ± SD) of 2.18% ± 1.61% and a Pearson's correlation coefficient of 0.94 (p < 0.01) between the sleep efficiency predictive values and the reference values. Our study is the first to achieve reliable and unconstrained prediction of sleep efficiency without overnight recording. This method has the potential to be utilized for home-based, long-term monitoring of sleep efficiency and to support reasonable decision-making regarding the execution of sleep efficiency improvement strategies.

摘要

睡眠效率是一种常用且广泛应用的客观评估睡眠质量的指标。监测睡眠效率能够提供有关健康状况的重要信息。为了便于更简便地监测睡眠效率,我们的研究旨在提出睡眠效率的新预测指标,以便在清醒休息期间对睡眠效率进行可靠且不受限制的估计。我们假设入睡前所观察到的自主神经系统活动可能与睡眠效率相关。为了评估自主活动,对心率变异性和呼吸参数进行了5分钟的分析。以提取的参数作为解释变量,对240份心电图和胸容积变化信号记录进行逐步多元线性回归分析和k折交叉验证测试,以建立睡眠效率预测模型。使用60份压电传感器信号记录对所建立模型的睡眠效率可预测性进行评估。利用心率变异性信号的低频和高频带功率之比以及平均吸气峰值流量值建立的回归模型,在睡眠效率预测值与参考值之间提供了2.18%±1.61%的绝对误差(均值±标准差)以及0.94的皮尔逊相关系数(p<0.01)。我们的研究首次在无需过夜记录的情况下实现了对睡眠效率的可靠且不受限制的预测。该方法有潜力用于基于家庭的睡眠效率长期监测,并支持在执行睡眠效率改善策略方面做出合理决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验