Garoutte Aaron, Cardenas Erick, Tiedje James, Howe Adina
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
J Microbiol Methods. 2016 Dec;131:122-129. doi: 10.1016/j.mimet.2016.10.018. Epub 2016 Oct 25.
Metatranscriptomics provides an opportunity to identify active microbes and expressed genes in complex soil communities in response to particular conditions. Currently, there are a limited number of soil metatranscriptome studies to provide guidance for using this approach in this challenging matrix. Hence, we evaluated the technical challenges of applying soil metatranscriptomics to a highly diverse, low activity natural system. We used a non-targeted rRNA removal approach, duplex nuclease specific (DSN) normalization, to generate a metatranscriptomic library from field collected soil supporting a perennial grass, Miscanthus x giganteus (a biofuel crop), and evaluated its ability to provide insight into its active community members and their expressed protein-coding genes. We also evaluated various bioinformatics approaches for analyzing our soil metatranscriptome, including annotation of unassembled transcripts, de novo assembly, and aligning reads to known genomes. Further, we evaluated various databases for their ability to provide annotations for our metatranscriptome. Overall, our results emphasize that low activity, highly genetically diverse and relatively stable microbiomes, like soil, requires very deep sequencing to sample the transcriptome beyond the common core functions. We identified several key areas that metatranscriptomic analyses will benefit from including increased rRNA removal, assembly of short read transcripts, and more relevant reference bases while providing a priority set of expressed genes for functional assessment.
宏转录组学为识别复杂土壤群落中响应特定条件的活跃微生物和表达基因提供了契机。目前,仅有数量有限的土壤宏转录组研究可为在这一具有挑战性的基质中运用该方法提供指导。因此,我们评估了将土壤宏转录组学应用于高度多样、低活性的自然系统所面临的技术挑战。我们采用了一种非靶向rRNA去除方法——双链核酸酶特异性(DSN)标准化,从田间采集的、支持多年生草本植物巨芒草(一种生物燃料作物)生长的土壤中生成一个宏转录组文库,并评估了其深入了解活跃群落成员及其表达的蛋白质编码基因的能力。我们还评估了多种用于分析土壤宏转录组的生物信息学方法,包括对未组装转录本的注释、从头组装以及将 reads 比对到已知基因组。此外,我们评估了各种数据库为我们的宏转录组提供注释的能力。总体而言,我们的结果强调,像土壤这样低活性、高度遗传多样且相对稳定的微生物群落,需要非常深度的测序才能对转录组进行采样,以超越常见的核心功能。我们确定了宏转录组分析将受益的几个关键领域,包括提高rRNA去除效率、短读长转录本的组装以及更多相关的参考碱基,同时提供一组用于功能评估的优先表达基因。