Suppr超能文献

囊性纤维化跨膜传导调节因子(CFTR)羧基末端内典型PDZ结合基序上游的一个序列增强了NHERF1相互作用。

A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.

作者信息

Sharma Neeraj, LaRusch Jessica, Sosnay Patrick R, Gottschalk Laura B, Lopez Andrea P, Pellicore Matthew J, Evans Taylor, Davis Emily, Atalar Melis, Na Chan-Hyun, Rosson Gedge D, Belchis Deborah, Milewski Michal, Pandey Akhilesh, Cutting Garry R

机构信息

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.

ARIEL Precision Medicine, Pittsburgh, Pennsylvania.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1170-L1182. doi: 10.1152/ajplung.00363.2016. Epub 2016 Oct 28.

Abstract

The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, K = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence EENKVR and the terminal TRL (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.

摘要

针对囊性纤维化的囊性纤维化跨膜传导调节因子(CFTR)靶向治疗的发展,引发了人们通过操纵与支架蛋白(如钠/氢交换调节因子-1,NHERF1)的相互作用来最大化CFTR突变形式的膜驻留时间的兴趣。在本研究中,我们探讨了CFTR中PDZ结合基序以外的COOH末端序列是否会影响其与NHERF1的相互作用。在高于生理水平的浓度下,NHERF1在印迹覆盖实验中显示出最小的自缔合(NHERF1,K = 1382±61.1 nM),据RNA测序估计生理水平为240 nM,通过液相色谱串联质谱法在汗腺(体内CFTR功能的关键部位)测得为260 nM。然而,在印迹覆盖实验、交联实验以及使用不同标签版本的NHERF1进行的共免疫沉淀实验中,在存在CFTR的最后111个氨基酸(20 nM)的情况下,NHERF1在相当低的浓度(10 nM)下发生寡聚化。缺失和丙氨酸诱变表明,COOH末端的一个六氨基酸序列EENKVR和末端TRL(PDZ结合基序)对于NHERF1增强的寡聚化至关重要。在Madin-Darby犬肾上皮细胞中稳定表达的全长CFTR促进了NHERF1寡聚化,当EEN、KVR或EENKVR残基被丙氨酸取代或TRL基序缺失时,这种寡聚化显著降低(约5倍)。共聚焦荧光显微镜显示,EENKVR和TRL序列有助于CFTR优先定位到顶端膜。总之,这些结果表明COOH末端序列介导了增强的NHERF1相互作用,并促进了CFTR的定位,这一特性可被操纵以稳定CFTR突变形式在顶端表面的存在,从而最大化CFTR靶向治疗的效果。

相似文献

1
A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.
Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1170-L1182. doi: 10.1152/ajplung.00363.2016. Epub 2016 Oct 28.
4
The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling.
Biochemistry. 2008 Sep 23;47(38):10084-98. doi: 10.1021/bi8003928. Epub 2008 Aug 29.
5
Role of the scaffold protein RACK1 in apical expression of CFTR.
Am J Physiol Cell Physiol. 2007 Jul;293(1):C294-304. doi: 10.1152/ajpcell.00413.2006. Epub 2007 Apr 4.
7
Increased diffusional mobility of CFTR at the plasma membrane after deletion of its C-terminal PDZ binding motif.
J Biol Chem. 2004 Feb 13;279(7):5494-500. doi: 10.1074/jbc.M312445200. Epub 2003 Dec 1.
9
Role of NHERF1, cystic fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9.
J Biol Chem. 2008 Feb 1;283(5):2986-96. doi: 10.1074/jbc.M704678200. Epub 2007 Nov 30.

引用本文的文献

1
Systematic deletion of symmetrical exons reveals new therapeutic targets for exon skipping antisense oligonucleotides.
NAR Mol Med. 2024 Nov 6;1(4):ugae017. doi: 10.1093/narmme/ugae017. eCollection 2024 Oct.
3
The role of CDX2 in renal tubular lesions during diabetic kidney disease.
Aging (Albany NY). 2021 Feb 17;13(5):6782-6803. doi: 10.18632/aging.202537.
5
Integrated Transcriptomic and Proteomic Analysis of Human Eccrine Sweat Glands Identifies Missing and Novel Proteins.
Mol Cell Proteomics. 2019 Jul;18(7):1382-1395. doi: 10.1074/mcp.RA118.001101. Epub 2019 Apr 12.
6
Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis.
PLoS Genet. 2018 Nov 16;14(11):e1007723. doi: 10.1371/journal.pgen.1007723. eCollection 2018 Nov.
7
The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis.
Curr Opin Pharmacol. 2018 Dec;43:152-165. doi: 10.1016/j.coph.2018.09.007. Epub 2018 Oct 16.
8
Characterization of Δ(G970-T1122)-CFTR, the most frequent CFTR mutant identified in Japanese cystic fibrosis patients.
J Physiol Sci. 2019 Jan;69(1):103-112. doi: 10.1007/s12576-018-0626-4. Epub 2018 Jun 27.

本文引用的文献

1
EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.
J Cell Sci. 2016 Jul 1;129(13):2599-612. doi: 10.1242/jcs.185629. Epub 2016 May 20.
2
Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells.
Annu Rev Cell Dev Biol. 2015;31:593-621. doi: 10.1146/annurev-cellbio-100814-125234.
4
Cystic fibrosis genetics: from molecular understanding to clinical application.
Nat Rev Genet. 2015 Jan;16(1):45-56. doi: 10.1038/nrg3849. Epub 2014 Nov 18.
5
A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards.
Mol Cell Proteomics. 2014 Dec;13(12):3497-506. doi: 10.1074/mcp.M113.037309. Epub 2014 Sep 15.
7
Mass-spectrometry-based draft of the human proteome.
Nature. 2014 May 29;509(7502):582-7. doi: 10.1038/nature13319.
8
A draft map of the human proteome.
Nature. 2014 May 29;509(7502):575-81. doi: 10.1038/nature13302.
9
NHERF2/NHERF3 protein heterodimerization and macrocomplex formation are required for the inhibition of NHE3 activity by carbachol.
J Biol Chem. 2014 Jul 18;289(29):20039-53. doi: 10.1074/jbc.M114.562413. Epub 2014 May 27.
10
What is the total number of protein molecules per cell volume? A call to rethink some published values.
Bioessays. 2013 Dec;35(12):1050-5. doi: 10.1002/bies.201300066. Epub 2013 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验