Sharma Neeraj, LaRusch Jessica, Sosnay Patrick R, Gottschalk Laura B, Lopez Andrea P, Pellicore Matthew J, Evans Taylor, Davis Emily, Atalar Melis, Na Chan-Hyun, Rosson Gedge D, Belchis Deborah, Milewski Michal, Pandey Akhilesh, Cutting Garry R
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
ARIEL Precision Medicine, Pittsburgh, Pennsylvania.
Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1170-L1182. doi: 10.1152/ajplung.00363.2016. Epub 2016 Oct 28.
The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, K = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence EENKVR and the terminal TRL (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.
针对囊性纤维化的囊性纤维化跨膜传导调节因子(CFTR)靶向治疗的发展,引发了人们通过操纵与支架蛋白(如钠/氢交换调节因子-1,NHERF1)的相互作用来最大化CFTR突变形式的膜驻留时间的兴趣。在本研究中,我们探讨了CFTR中PDZ结合基序以外的COOH末端序列是否会影响其与NHERF1的相互作用。在高于生理水平的浓度下,NHERF1在印迹覆盖实验中显示出最小的自缔合(NHERF1,K = 1382±61.1 nM),据RNA测序估计生理水平为240 nM,通过液相色谱串联质谱法在汗腺(体内CFTR功能的关键部位)测得为260 nM。然而,在印迹覆盖实验、交联实验以及使用不同标签版本的NHERF1进行的共免疫沉淀实验中,在存在CFTR的最后111个氨基酸(20 nM)的情况下,NHERF1在相当低的浓度(10 nM)下发生寡聚化。缺失和丙氨酸诱变表明,COOH末端的一个六氨基酸序列EENKVR和末端TRL(PDZ结合基序)对于NHERF1增强的寡聚化至关重要。在Madin-Darby犬肾上皮细胞中稳定表达的全长CFTR促进了NHERF1寡聚化,当EEN、KVR或EENKVR残基被丙氨酸取代或TRL基序缺失时,这种寡聚化显著降低(约5倍)。共聚焦荧光显微镜显示,EENKVR和TRL序列有助于CFTR优先定位到顶端膜。总之,这些结果表明COOH末端序列介导了增强的NHERF1相互作用,并促进了CFTR的定位,这一特性可被操纵以稳定CFTR突变形式在顶端表面的存在,从而最大化CFTR靶向治疗的效果。