Suppr超能文献

造血作用与血液系统恶性肿瘤的表观遗传学

Epigenetics of hematopoiesis and hematological malignancies.

作者信息

Hu Deqing, Shilatifard Ali

机构信息

Department of Biochemistry and Molecular Genetics.

Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.

出版信息

Genes Dev. 2016 Sep 15;30(18):2021-2041. doi: 10.1101/gad.284109.116.

Abstract

Hematological malignancies comprise a diverse set of lymphoid and myeloid neoplasms in which normal hematopoiesis has gone awry and together account for ∼10% of all new cancer cases diagnosed in the United States in 2016. Recent intensive genomic sequencing of hematopoietic malignancies has identified recurrent mutations in genes that encode regulators of chromatin structure and function, highlighting the central role that aberrant epigenetic regulation plays in the pathogenesis of these neoplasms. Deciphering the molecular mechanisms for how alterations in epigenetic modifiers, specifically histone and DNA methylases and demethylases, drive hematopoietic cancer could provide new avenues for developing novel targeted epigenetic therapies for treating hematological malignancies. Just as past studies of blood cancers led to pioneering discoveries relevant to other cancers, determining the contribution of epigenetic modifiers in hematologic cancers could also have a broader impact on our understanding of the pathogenesis of solid tumors in which these factors are mutated.

摘要

血液系统恶性肿瘤包括多种淋巴样和髓样肿瘤,其中正常造血功能出现紊乱,2016年在美国新诊断的所有癌症病例中,这类肿瘤约占10%。近期对造血系统恶性肿瘤进行的深入基因组测序已确定,编码染色质结构和功能调节因子的基因存在反复突变,这凸显了异常表观遗传调控在这些肿瘤发病机制中所起的核心作用。解读表观遗传修饰因子(特别是组蛋白和DNA甲基化酶及去甲基化酶)的改变如何驱动造血系统癌症的分子机制,可为开发治疗血液系统恶性肿瘤的新型靶向表观遗传疗法提供新途径。正如过去对血癌的研究带来了与其他癌症相关的开创性发现一样,确定表观遗传修饰因子在血液系统癌症中的作用,也可能对我们理解这些因素发生突变的实体瘤发病机制产生更广泛的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d9a/5066610/4586f139136f/2021f01.jpg

相似文献

1
Epigenetics of hematopoiesis and hematological malignancies.
Genes Dev. 2016 Sep 15;30(18):2021-2041. doi: 10.1101/gad.284109.116.
2
Epigenetics in the hematologic malignancies.
Haematologica. 2014 Dec;99(12):1772-83. doi: 10.3324/haematol.2013.092007.
3
The role of chromatin modifiers in normal and malignant hematopoiesis.
Blood. 2013 Apr 18;121(16):3076-84. doi: 10.1182/blood-2012-10-451237. Epub 2013 Jan 2.
4
Epigenetics in normal and malignant hematopoiesis: An overview and update 2017.
Cancer Sci. 2017 Apr;108(4):553-562. doi: 10.1111/cas.13168. Epub 2017 Apr 20.
5
Multifaceted role of the polycomb-group gene EZH2 in hematological malignancies.
Int J Hematol. 2017 Jan;105(1):23-30. doi: 10.1007/s12185-016-2124-x. Epub 2016 Nov 9.
6
TET2 as an epigenetic master regulator for normal and malignant hematopoiesis.
Cancer Sci. 2014 Sep;105(9):1093-9. doi: 10.1111/cas.12484. Epub 2014 Sep 3.
7
Lysine-specific histone demethylases in normal and malignant hematopoiesis.
Exp Hematol. 2016 Sep;44(9):778-782. doi: 10.1016/j.exphem.2016.05.006. Epub 2016 May 18.
8
[A primer for epigenetics of hematological malignancies].
Rinsho Ketsueki. 2016;57(10):1835-1844. doi: 10.11406/rinketsu.57.1835.
9
Epigenetics in Hematological Malignancies.
Methods Mol Biol. 2018;1856:87-101. doi: 10.1007/978-1-4939-8751-1_5.
10
DNA methylation in normal and malignant hematopoiesis.
Int J Hematol. 2016 Jun;103(6):617-26. doi: 10.1007/s12185-016-1957-7. Epub 2016 Mar 4.

引用本文的文献

2
Hispidulin: a potential alternative to vorinostat against HDAC1 for acute myeloid leukemia.
Discov Oncol. 2025 Jul 22;16(1):1389. doi: 10.1007/s12672-025-03182-y.
4
The epigenetic revolution in hematology: from benchside breakthroughs to clinical transformations.
Clin Exp Med. 2025 Jul 1;25(1):230. doi: 10.1007/s10238-025-01783-z.
6
Prognostic value of Glasgow prognostic score in hematological malignancies: a systematic review and meta-analysis.
Int J Hematol. 2025 Apr;121(4):450-461. doi: 10.1007/s12185-025-03935-z. Epub 2025 Feb 3.
7
Antibody-Based Immunotherapies for the Treatment of Hematologic Malignancies.
Cancers (Basel). 2024 Dec 15;16(24):4181. doi: 10.3390/cancers16244181.
8
Decoding cancer etiology with cellular reprogramming.
Curr Opin Genet Dev. 2025 Feb;90:102301. doi: 10.1016/j.gde.2024.102301. Epub 2024 Dec 24.
10
Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation.
PLoS Comput Biol. 2024 Nov 18;20(11):e1012565. doi: 10.1371/journal.pcbi.1012565. eCollection 2024 Nov.

本文引用的文献

2
Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status.
Nat Med. 2016 Jun 7;22(6):577-8. doi: 10.1038/nm.4098.
3
Epigenetic balance of gene expression by Polycomb and COMPASS families.
Science. 2016 Jun 3;352(6290):aad9780. doi: 10.1126/science.aad9780.
5
Exploiting the Epigenome to Control Cancer-Promoting Gene-Expression Programs.
Cancer Cell. 2016 Apr 11;29(4):464-476. doi: 10.1016/j.ccell.2016.03.007.
8
Myeloproliferative neoplasms: Current molecular biology and genetics.
Crit Rev Oncol Hematol. 2016 Feb;98:375-89. doi: 10.1016/j.critrevonc.2015.11.004. Epub 2015 Nov 28.
9
Regulation of gene transcription by Polycomb proteins.
Sci Adv. 2015 Dec 4;1(11):e1500737. doi: 10.1126/sciadv.1500737. eCollection 2015 Dec.
10
Drugging Chromatin in Cancer: Recent Advances and Novel Approaches.
Mol Cell. 2015 Nov 19;60(4):561-70. doi: 10.1016/j.molcel.2015.10.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验