Suppr超能文献

哺乳动物核型多样化速率的比较研究。

A comparative study on karyotypic diversification rate in mammals.

作者信息

Martinez P A, Jacobina U P, Fernandes R V, Brito C, Penone C, Amado T F, Fonseca C R, Bidau C J

机构信息

PIBi Lab-Laboratorio de Pesquisas Integrativas em Biodiversidade, Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe, São Cristovão, Brazil.

Universidade Federal de Alagoas, Penedo, Brazil.

出版信息

Heredity (Edinb). 2017 Apr;118(4):366-373. doi: 10.1038/hdy.2016.110. Epub 2016 Nov 2.

Abstract

Chromosomal rearrangements have a relevant role in organismic evolution. However, little is known about the mechanisms that lead different phylogenetic clades to have different chromosomal rearrangement rates. Here, we investigate the causes behind the wide karyotypic diversity exhibited by mammals. In particular, we analyzed the role of metabolic, reproductive, biogeographic and genomic characteristics on the rates of macro- and microstructural karyotypic diversification (rKD) using comparative phylogenetic methods. We found evidence that reproductive characteristics such as larger litter size per year and longevity, by allowing a higher number of meioses in absolute time, favor a higher probability of chromosomal change. Furthermore, families with large geographic distributions but containing species with restricted geographic ranges showed a greater probability of fixation of macrostructural chromosomal changes in different geographic areas. Finally, rKD does not evolve by Brownian motion because the mutation rate depends on the concerted evolution of repetitive sequences. The decisive factors of rKD evolution will be natural selection, genetic drift and meiotic drive that will eventually allow or not the fixation of the rearrangements. Our results indicate that mammalian karyotypic diversity is influenced by historical and adaptive mechanisms where reproductive and genomic factors modulate the rate of chromosomal change.

摘要

染色体重排在生物进化中具有重要作用。然而,对于导致不同系统发育分支具有不同染色体重排速率的机制,我们知之甚少。在此,我们研究了哺乳动物所展现出的广泛核型多样性背后的原因。具体而言,我们使用比较系统发育方法,分析了代谢、生殖、生物地理和基因组特征对宏观和微观结构核型多样化速率(rKD)的作用。我们发现有证据表明,诸如每年产仔数较多和寿命较长等生殖特征,由于在绝对时间内允许更多次减数分裂,有利于染色体发生变化的更高概率。此外,地理分布广泛但包含地理范围受限物种的科,在不同地理区域显示出更大的宏观结构染色体变化固定概率。最后,rKD并非通过布朗运动进化,因为突变率取决于重复序列的协同进化。rKD进化的决定性因素将是自然选择、遗传漂变和减数分裂驱动,它们最终会允许或不允许重排的固定。我们的结果表明,哺乳动物核型多样性受历史和适应性机制影响,其中生殖和基因组因素调节染色体变化速率。

相似文献

1
A comparative study on karyotypic diversification rate in mammals.
Heredity (Edinb). 2017 Apr;118(4):366-373. doi: 10.1038/hdy.2016.110. Epub 2016 Nov 2.
2
Meiotic drive shapes rates of karyotype evolution in mammals.
Evolution. 2019 Mar;73(3):511-523. doi: 10.1111/evo.13682. Epub 2019 Feb 5.
3
Chromosomal diversity in tropical reef fishes is related to body size and depth range.
Mol Phylogenet Evol. 2015 Dec;93:1-4. doi: 10.1016/j.ympev.2015.07.002. Epub 2015 Jul 17.
4
Evidence for meiotic drive as an explanation for karyotype changes in fishes.
Mar Genomics. 2014 Jun;15:29-34. doi: 10.1016/j.margen.2014.05.001. Epub 2014 May 17.
5
Chromosomal polymorphism in mammals: an evolutionary perspective.
Biol Rev Camb Philos Soc. 2017 Feb;92(1):1-21. doi: 10.1111/brv.12213. Epub 2015 Aug 3.
7
Rates of karyotypic evolution in Estrildid finches differ between island and continental clades.
Evolution. 2015 Apr;69(4):890-903. doi: 10.1111/evo.12633. Epub 2015 Apr 10.
8
Meiotic drive against chromosome fusions in butterfly hybrids.
Chromosome Res. 2024 May 4;32(2):7. doi: 10.1007/s10577-024-09752-0.
9
Female meiosis drives karyotypic evolution in mammals.
Genetics. 2001 Nov;159(3):1179-89. doi: 10.1093/genetics/159.3.1179.
10
The tempo and mode of evolution: body sizes of island mammals.
Evolution. 2011 Jul;65(7):1927-34. doi: 10.1111/j.1558-5646.2011.01263.x. Epub 2011 Mar 19.

引用本文的文献

1
A macroevolutionary role for chromosomal fusion and fission in butterflies.
Sci Adv. 2024 Apr 19;10(16):eadl0989. doi: 10.1126/sciadv.adl0989. Epub 2024 Apr 17.
2
The state of Medusozoa genomics: current evidence and future challenges.
Gigascience. 2022 May 17;11. doi: 10.1093/gigascience/giac036.
3
Genome size versus geographic range size in birds.
PeerJ. 2021 Feb 10;9:e10868. doi: 10.7717/peerj.10868. eCollection 2021.
4
Speciation through chromosomal fusion and fission in Lepidoptera.
Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190539. doi: 10.1098/rstb.2019.0539. Epub 2020 Jul 13.
5
Ancestral Reconstruction of Karyotypes Reveals an Exceptional Rate of Nonrandom Chromosomal Evolution in Sunflower.
Genetics. 2020 Apr;214(4):1031-1045. doi: 10.1534/genetics.120.303026. Epub 2020 Feb 7.
6
Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation.
PLoS Biol. 2019 Dec 4;17(12):e3000494. doi: 10.1371/journal.pbio.3000494. eCollection 2019 Dec.
7
Meiotic drive shapes rates of karyotype evolution in mammals.
Evolution. 2019 Mar;73(3):511-523. doi: 10.1111/evo.13682. Epub 2019 Feb 5.
8
Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats.
Chromosome Res. 2017 Oct;25(3-4):313-325. doi: 10.1007/s10577-017-9565-9. Epub 2017 Sep 15.

本文引用的文献

1
Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution.
Am Nat. 2004 Dec;164(6):683-695. doi: 10.1086/426002.
2
THE EXPECTED FIXATION RATE OF CHROMOSOMAL INVERSIONS.
Evolution. 1984 Jul;38(4):743-752. doi: 10.1111/j.1558-5646.1984.tb00347.x.
3
Chromosomal polymorphism in mammals: an evolutionary perspective.
Biol Rev Camb Philos Soc. 2017 Feb;92(1):1-21. doi: 10.1111/brv.12213. Epub 2015 Aug 3.
4
Chromosomal diversity in tropical reef fishes is related to body size and depth range.
Mol Phylogenet Evol. 2015 Dec;93:1-4. doi: 10.1016/j.ympev.2015.07.002. Epub 2015 Jul 17.
5
Rates of karyotypic evolution in Estrildid finches differ between island and continental clades.
Evolution. 2015 Apr;69(4):890-903. doi: 10.1111/evo.12633. Epub 2015 Apr 10.
6
Tree of life reveals clock-like speciation and diversification.
Mol Biol Evol. 2015 Apr;32(4):835-45. doi: 10.1093/molbev/msv037. Epub 2015 Mar 3.
7
A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach.
Mol Phylogenet Evol. 2015 Mar;84:14-26. doi: 10.1016/j.ympev.2014.11.001. Epub 2014 Dec 24.
8
Recombination, chromosome number and eusociality in the Hymenoptera.
J Evol Biol. 2015 Jan;28(1):105-16. doi: 10.1111/jeb.12543. Epub 2015 Jan 6.
9
Local adaptation and the evolution of chromosome fusions.
Evolution. 2014 Oct;68(10):2747-56. doi: 10.1111/evo.12481. Epub 2014 Aug 1.
10
Evidence for meiotic drive as an explanation for karyotype changes in fishes.
Mar Genomics. 2014 Jun;15:29-34. doi: 10.1016/j.margen.2014.05.001. Epub 2014 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验