ETSIIT, University of Granada, Granada, Spain.
ETSIIT, University of Granada, Granada, Spain.
Comput Biol Med. 2016 Dec 1;79:222-232. doi: 10.1016/j.compbiomed.2016.10.012. Epub 2016 Oct 17.
In this work we present a new solution for correctly handling heterogeneous materials in ChainMail models, which are widely used in medical applications. Our core method relies on two main components: (1) a novel timestamp-based propagation scheme that tracks the propagation speed of a deformation through the model and allows to correct ambiguous configurations, and (2) a novel relaxation stage that performs an energy minimization process taking into account the heterogeneity of the model. In addition, our approach extends the SP-ChainMail algorithm by supporting interactive topology changes and handling multiple concurrent deformations, increasing its range of applicability. Finally, we present an improved blocking scheme that efficiently handles the sparse computation, greatly increasing the performance of our algorithm. Our proposed solution has been applied to interactive deformation of large medical datasets. The simulation model is directly generated from the input dataset and a user defined material transfer function, while the visualization of the deformations is performed by rendering the resampled deformed model using direct volume rendering techniques. In our results, we show that our parallel pipeline is capable of interactively deforming models with several million elements. A comparison is finally discussed, analyzing the properties of our approach with respect to previous work. The results show that our algorithm correctly handles very large heterogeneous ChainMail models in an interactive manner, increasing the applicability of the ChainMail approach for more demanding scenarios both in response time and material modeling.
在这项工作中,我们提出了一种新的解决方案,用于正确处理 ChainMail 模型中的异构材料,该模型广泛应用于医疗应用中。我们的核心方法依赖于两个主要组件:(1)一种新颖的基于时间戳的传播方案,该方案通过模型跟踪变形的传播速度,并允许纠正模棱两可的配置;(2)一种新颖的松弛阶段,该阶段考虑到模型的异质性执行能量最小化过程。此外,我们的方法通过支持交互式拓扑更改和处理多个并发变形来扩展 SP-ChainMail 算法,从而增加了其适用性范围。最后,我们提出了一种改进的阻塞方案,该方案有效地处理稀疏计算,大大提高了我们算法的性能。我们提出的解决方案已应用于大型医疗数据集的交互式变形。模拟模型是直接从输入数据集和用户定义的材料传递函数生成的,而变形的可视化是通过使用直接体绘制技术渲染重采样的变形模型来完成的。在我们的结果中,我们表明我们的并行流水线能够以交互方式变形具有数百万个元素的模型。最后讨论了一个比较,分析了我们的方法相对于以前的工作的特性。结果表明,我们的算法能够以交互方式正确处理非常大的异构 ChainMail 模型,从而提高了 ChainMail 方法在响应时间和材料建模方面更具挑战性的场景中的适用性。