Suppr超能文献

严重不确定性下无人机复杂任务的稳健满意决策

Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty.

作者信息

Ji Xiaoting, Niu Yifeng, Shen Lincheng

机构信息

College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China.

出版信息

PLoS One. 2016 Nov 11;11(11):e0166448. doi: 10.1371/journal.pone.0166448. eCollection 2016.

Abstract

This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.

摘要

本文提出了一种用于无人机(UAV)在不确定环境中执行复杂任务的稳健满意决策方法。受信息间隙决策理论的启发,我们将此问题表述为一个新颖的稳健满意优化问题,其目标是在满足一些期望的任务要求的同时最大化稳健性。具体而言,构建了一种基于新信息间隙的马尔可夫决策过程(IMDP),以抽象不确定的无人机系统,并使用线性时态逻辑(LTL)指定复杂的任务要求。获得了一种稳健满意策略,以在确保满足LTL规范的期望概率的同时,最大化对不确定IMDP的稳健性。为此,我们提出了一种两阶段稳健满意求解策略,该策略包括构建乘积IMDP和生成稳健满意策略。在第一阶段,通过将IMDP与表示LTL规范的自动机相结合来构建乘积IMDP。在第二阶段,提出了一种基于稳健动态规划的算法来生成稳健满意策略,同时给出了一种相关的稳健性评估算法来评估稳健性。最后,通过蒙特卡罗模拟,在严重不确定性下的无人机搜索任务中证明了我们算法的有效性,从而使所得策略在达到期望性能水平的同时能够最大化稳健性。此外,通过将所提出的方法与其他稳健决策方法进行比较,可以得出结论,我们的策略能够容忍更高的不确定性,从而能够保证期望的性能水平,这表明所提出的方法在实际应用中更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c529/5105955/461b5747b000/pone.0166448.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验